scispace - formally typeset
Search or ask a question
Author

Asbury H. Sallenger

Bio: Asbury H. Sallenger is an academic researcher from United States Geological Survey. The author has contributed to research in topics: Barrier island & Shore. The author has an hindex of 35, co-authored 99 publications receiving 6372 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions.

1,058 citations

Journal ArticleDOI
TL;DR: A summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems can be found in this article.
Abstract: Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed

713 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide field evidence of the existence, magnitude and formative processes of a sea-level-rise hotspot located in one of the world's most densely populated coastal areas encompassing Boston, Providence, New York City, Philadelphia, Baltimore and Virginia Beach.
Abstract: This study provides field evidence of the existence, magnitude and formative processes of a sea-level-rise hotspot located in one of the world’s most densely populated coastal areas encompassing Boston, Providence, New York City, Philadelphia, Baltimore and Norfolk Virginia Beach.

705 citations

Journal Article
TL;DR: In this paper, a method was developed for estimating shun-line position from airborne scanning laser data, which allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large scale coastal behavior.
Abstract: A method has been developed for estimating shun-line position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ±1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

343 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured 154 runup time series measured on a moderately steep beach under incident waves varying from 0.4 to 4.0 m significant wave height, and found that the infragravity band appears to become dominant in the swash below some value of ξ0.
Abstract: Wave setup and swash statistics were calculated from 154 runup time series measured on a moderately steep beach under incident waves varying from 0.4 to 4.0 m significant wave height. When scaled by the incident wave height, setup, swash height, and total runup (the sum of setup and half the swash height) were found to vary linearly with the surf zone similarity parameter ξ0 = β(H0/L0)−1/2. The foreshore slope appeared the appropriate value for the calculation of ξ0, although the setup data showed some influence of an offshore bar at low tide. For low Irribaren numbers the swash height in the incident frequency band becomes saturated, while for high Irribaren numbers, no such signs of saturations were seen. Thus the infragravity band appears to become dominant in the swash below some value of ξ0. For these data, that value is approximately 1.75, although there is considerable scatter associated with that estimate.

323 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the main ecological services across a variety of estuarine and coastal ecosystems (ECEs) including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes are reviewed.
Abstract: The global decline in estuarine and coastal ecosystems (ECEs) is affecting a number of critical benefits, or ecosystem services. We review the main ecological services across a variety of ECEs, including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes. Where possible, we indicate estimates of the key economic values arising from these services, and discuss how the natural variability of ECEs impacts their benefits, the synergistic relationships of ECEs across seascapes, and management implications. Although reliable valuation estimates are beginning to emerge for the key services of some ECEs, such as coral reefs, salt marshes, and mangroves, many of the important benefits of seagrass beds and sand dunes and beaches have not been assessed properly. Even for coral reefs, marshes, and mangroves, important ecological services have yet to be valued reliably, such as cross-ecosystem nutrient transfer (coral reefs), erosion control (marshes), and pollution control (mangroves). An important issue for valuing certain ECE services, such as coastal protection and habitat-fishery linkages, is that the ecological functions underlying these services vary spatially and temporally. Allowing for the connectivity between ECE habitats also may have important implications for assessing the ecological functions underlying key ecosystems services, such coastal protection, control of erosion, and habitat-fishery linkages. Finally, we conclude by suggesting an action plan for protecting and/or enhancing the immediate and longer-term values of ECE services. Because the connectivity of ECEs across land-sea gradients also influences the provision of certain ecosystem services, management of the entire seascape will be necessary to preserve such synergistic effects. Other key elements of an action plan include further ecological and economic collaborative research on valuing ECE services, improving institutional and legal frameworks for management, controlling and regulating destructive economic activities, and developing ecological restoration options.

3,750 citations

Journal ArticleDOI
TL;DR: The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature as discussed by the authors, however, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex.
Abstract: Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.

2,137 citations

Book Chapter
01 Jan 2007
TL;DR: Since the IPCC Third Assessment Report (TAR), our understanding of the implications of climate change for coastal systems and low-lying areas (henceforth referred to as "coasts") has increased substantially and six important policy-relevant messages have emerged as discussed by the authors.
Abstract: Since the IPCC Third Assessment Report (TAR), our understanding of the implications of climate change for coastal systems and low-lying areas (henceforth referred to as ‘coasts’) has increased substantially and six important policy-relevant messages have emerged. Coasts are experiencing the adverse consequences of hazards related to climate and sea level (very high confidence). Coasts are highly vulnerable to extreme events, such as storms, which impose substantial costs on coastal societies [6.2.1, 6.2.2, 6.5.2]. Annually, about 120 million people are exposed to tropical cyclone hazards, which killed 250,000 people from 1980 to 2000 [6.5.2]. Through the 20th century, global rise of sea level contributed to increased coastal inundation, erosion and ecosystem losses, but with considerable local and regional variation due to other factors [6.2.5, 6.4.1]. Late 20th century effects of rising temperature include loss of sea ice, thawing of permafrost and associated coastal retreat, and more frequent coral bleaching and mortality [6.2.5]. Coasts will be exposed to increasing risks, including coastal erosion, over coming decades due to climate change and sea-level rise (very high confidence). Anticipated climate-related changes include: an accelerated rise in sea level of up to 0.6 m or more by 2100; a further rise in sea surface temperatures by up to 3°C; an intensification of tropical and extratropical cyclones; larger extreme waves and storm surges; altered precipitation/run-off; and ocean acidification [6.3.2]. These phenomena will vary considerably at regional and local scales, but the impacts are virtually certain to be overwhelmingly negative [6.4, 6.5.3].

1,755 citations

01 Jan 2006
TL;DR: Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.
Abstract: Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few leverage species may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.

1,645 citations

Journal ArticleDOI
TL;DR: Over the past two decades, a strong consensus has evolved among the scientific community that N is the primary cause of eutrophication in many coastal ecosystems.
Abstract: The first special volume of Limnology and Oceanography, published in 1972, focused on whether phosphorus (P) or carbon (C) is the major agent causing eutrophication in aquatic ecosystems. Only slight mention was made that estuaries may behave differently from lakes and that nitrogen (N) may cause eutrophication in estuaries. In the following decade, an understanding of eutrophication in estuaries proceeded in relative isolation from the community of scientists studying lakes. National water quality policy in the United States was directed almost solely toward P control for both lakes and estuaries, and similarly, European nations tended to focus on P control in lakes. Although bioassay data indicated N control of eutrophication in estuaries as early as the 1970s, this body of knowledge was treated with skepticism by many freshwater scientists and water-quality managers, because bioassay data in lakes often did not properly indicate the importance of P relative to C in those ecosystems. Hence, the bioassay data in estuaries had little influence on water-quality management. Over the past two decades, a strong consensus has evolved among the scientific community that N is the primary cause of eutrophication in many coastal ecosystems. The development of this consensus was based in part on data from whole-ecosystem studies and on a growing body of evidence that presented convincing mechanistic reasons why the controls of eutrophication in lakes and coastal marine ecosystems may differ. Even though N is probably the major cause of eutrophication in most coastal systems in the temperate zone, optimal management of coastal eutrophication suggests controlling both N and P, in part because P can limit primary production in some systems. In addition, excess P in estuaries can interact with the availability of N and silica (Si) to adversely affect ecological structure. Reduction of P to upstream freshwater ecosystems can also benefit coastal marine ecosystems through mechanisms such as increased Si fluxes.

1,270 citations