scispace - formally typeset
Search or ask a question
Author

Ashish Agarwal

Bio: Ashish Agarwal is an academic researcher from Lovely Professional University. The author has contributed to research in topics: Magnetic flux & Magnet. The author has an hindex of 2, co-authored 2 publications receiving 8 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of aspect ratio (solenoidal height to bore diameter ratio) on the normal component of the magnetic field has also been assessed in the superconducting domain and it has been concluded that it would be beneficial to operate at higher currents as it can reduce the total length of the superconductor.
Abstract: Due to fast response and high energy density characteristics, Superconducting Magnetic Energy Storage (SMES) can work efficiently while stabilizing the power grid. The challenges like voltage fluctuations, load shifting and seasonal load demands can be accomplished through HTS magnet as this device has a great potential to supply power for a time span varies from few seconds to hours. Solenoidal configuration has been widely employed (over toroidal) in the development of SMES prototypes as it is simpler to manufacture and allows an easier handling of the mechanical stresses imposed on the structure due to Lorentz forces. A micro-SMES of capacity 10 MJ can be employed to mitigate the challenges like load leveling, dynamic stability, transient stability, voltage stability, frequency regulation, transmission capability enhancement, power quality improvement, automatic generation control, uninterruptible power supplies, etc. In this work, solenoidal configuration has been engaged in the development of 10 MJ SMES Magnet using 2 G (SuperPower, YBCO having Tc = 90 K @0T) High Temperature Superconducting (HTS) tape. The superconducting tape has been cooled at 14 K using conduction cooling. The effect of maximum operating current (3250A, 2600A, 1950A and 1300A) on the inductance, maximum storable energy and length of superconductor has also been evaluated for a constant deliverable energy of 10 MJ. A numerical analysis is done on 10 MJ HTS SMES where perpendicular field of 3T has been considered. The effect of aspect ratio (solenoidal height to bore diameter ratio) on the normal component of the magnetic field has also been assessed. Lorentz forces (N/m3) have been evaluated in the superconducting domain. It has been concluded that it would be beneficial to operate at higher currents (i.e. more current through single tape) as it can reduce the total length of the superconductor. The perpendicular component of magnetic flux for the analysis is found to 2.96T which is less than 3T.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a 2.5MJ SMES solenoidal magnet using 2G (SuperPower, YBCO having Tc=90K @ 0T) HTS tape has been evaluated.

8 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2022-Energy
TL;DR: In this paper , the authors proposed an optimized forecasting model-an extreme learning machine (ELM) model coupled with the heuristic Kalman filter (HKF) algorithm to forecast the capacity of supercapacitors.

59 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive overview of the applications of various energy storage technologies and evaluates their capabilities of mitigating the fluctuation and uncertainty of renewable energy, including superconducting magnetic energy, flywheel energy, redox flow batteries, compressed air energy storage, pump hydro storage and lithium-ion batteries.
Abstract: Given the urgency of climate change mitigation, it is crucial to increase the practical utilization of renewable energy. However, high uncertainty and large fluctuation of variable renewable energy create enormous challenges to increasing the penetration of renewable energy. Various energy storage technologies have been applied to renewable energy to handle the fluctuation and uncertainty problem. To enrich the knowledge about the effects of energy storage technologies, this paper performs a comprehensive overview of the applications of various energy storage technologies and evaluates their capabilities of mitigating the fluctuation and uncertainty of renewable energy. The main techno-economic characteristics of the energy storage technologies, including: super-conducting magnetic energy storage, flywheel energy storage, redox flow batteries, compressed air energy storage, pump hydro storage and lithium-ion batteries, are analyzed. Moreover, supercapacitor storage, sodium‑sulfur batteries, lead-acid batteries and nickel‑cadmium batteries are also discussed in this study.

47 citations

S S Oh, H S Ha, D W Ha, Y K Kwon, K S Ryu 
23 Nov 2001
TL;DR: In this article, the powder-in-tube process was optimized to enhance the engineering critical current density of Bi-2223/Ag tapes for HTS current leads, and a low heat leak type HTS-current lead was fabricated with multi-filamentary Bi-23/Au tapes by employing a stepped geometry.
Abstract: Abstract We are developing Bi-2223/Ag tapes with a high engineering critical current density by optimizing the powder-in-tube process and are studying its application to coil and current leads. We have fabricated 250 m-long tape and investigated optimized processing conditions to enhance engineering critical current density. More bubbling was found when the tape was heat-treated with a higher heating rate. Different kinds of superconducting joints were fabricated with multi-filamentary Bi-2223/Ag tapes, and 58% of retained I c was achieved using the insertion of Bi-2223 core between two exposed tapes. Current decay property of the persistent mode HTS coil was investigated. Rapid current decay was observed when the operating current is in a flux-flow range. We could successfully fabricate a low heat leak type HTS current lead with Bi-2223/Ag–Au tapes by employing a stepped geometry. Using this lead, safe operation of 2 kA current transport was confirmed.

12 citations

Journal ArticleDOI
TL;DR: In this paper , a clear and concise review on the use of superconducting magnetic energy storage (SMES) systems for renewable energy applications with the attendant challenges and future research direction is provided.
Abstract: This paper provides a clear and concise review on the use of superconducting magnetic energy storage (SMES) systems for renewable energy applications with the attendant challenges and future research direction. A brief history of SMES and the operating principle has been presented. Also, the main components of SMES are discussed. A bibliographical software was used to analyse important keywords relating to SMES obtained from top 1240 most relevant research on superconducting magnetic energy storage system that have been published in reputable journals in recent times. Comparison of SMES with other competitive energy storage technologies is presented in order to reveal the present status of SMES in relation to other viable energy storage systems. In addition, various research on the application of SMES for renewable energy applications are reviewed including control strategies and power electronic interfaces for SMES. Important technology road map and set targets for SMES development from year 2020 to 2050 are summarized. This paper also discusses important challenges facing the development and application of SMES and points out vital future research direction on the development and improvement of SMES systems for renewable energy applications. This work will be of significant interest and will provide important insights for researchers in the field of renewable energy and energy storage, utilities and government agencies. • Review of SMES for renewable energy applications has been carried out. • Bibliographical analysis of important keywords on SMES has been provided. • Published articles in the last 10 years on SMES categorized and presented. • Road map and set targets for SMES technology from 2020 to 2050 are summarized. • Challenges of SMES application and future research direction have been discussed.

10 citations

Journal ArticleDOI
TL;DR: In this paper, a superconducting magnetic energy storage system (SMES) produced by Si micro fabrication technologies has been proposed to improve electricity storage volume density, w, in the sub-Wh/L range of conventional SMESs and to produce them at a low cost by mass production.
Abstract: A compact superconducting magnetic energy storage system (SMES) produced by Si micro fabrication technologies has been proposed to improve electricity storage volume density, w, in the sub-Wh/L range of conventional SMESs and to produce them at a low cost by mass production. In parallel with the experimental development reported previously, a series of trials was performed to estimate a feasible value of w based on the calculation of the magnetic field generated by the compact SMES by improving the calculation models step by step. In this work, the experimentally obtained magnetic flux density dependence of superconductive critical current density was taken into consideration for the first time in this series of trials, together with the additional improvement of the calculation models. The results of the estimation indicated that a compact SMES produced by the proposed concept can attain a w in the Wh/L range or more, ranking with or surpassing that of presently used capacitors.

3 citations