scispace - formally typeset
Search or ask a question
Author

Ashlee J Medica

Bio: Ashlee J Medica is an academic researcher from University of Newcastle. The author has contributed to research in topics: Medicine & Insemination. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
11 Aug 2021
TL;DR: It is concluded that incubation of stallion spermatozoa with sub-µm-sized GPL micelles results in the incorporation of exogenous GPL into sperm membranes, diminishing lipid peroxidation and improving sperm quality in vitro.
Abstract: Stallion sperm membranes comprise a high proportion of polyunsaturated fatty acids, making stallion spermatozoa especially vulnerable to peroxidative damage from reactive oxygen species generated as a by-product of cell metabolism. Membrane lipid replacement therapy with glycerophospholipid (GPL) mixtures has been shown to reduce oxidative damage in vitro and in vivo. The aims of this study were to test the effects of a commercial preparation of GPL, NTFactor® Lipids, on stallion spermatozoa under oxidative stress. When oxidative damage was induced by the addition of arachidonic acid to stallion spermatozoa, the subsequent addition of GPL reduced the percentage of 4-hydroxynonenal (4-HNE; a key end product of lipid peroxidation) positive cells (32.9 ± 2.7 vs 20.9 ± 2.3%; P ≤ 0.05) and increased the concentration of 4-HNE within the spent media (0.026 ± 0.003 vs 0.039 ± 0.004 µg/mL; P ≤ 0.001), suggesting that oxidized lipids had been replaced by exogenous GPL. Lipid replacement improved several motility parameters (total motility: 2.0 ± 1.0 vs 68.8 ± 2.9%; progressive motility: 0 ± 0 vs 19.3 ± 2.6%; straight line velocity: 9.5 ± 2.1 vs 50.9 ± 4.1 µm/s; curvilinear velocity: 40.8 ± 10 vs 160.7 ± 7.8 µm/s; average path velocity: 13.4 ± 2.9 vs 81.9 ± 5.9 µm/s; P ≤ 0.001), sperm viability (13.5 ± 2.9 vs 80.2 ± 1.6%; P ≤ 0.001) and reduced mitochondrial ROS generation (98.2 ± 0.6 vs 74.8 ± 6.1%; P ≤ 0.001). Supplementation with GPL during 17°C in vitro sperm storage over 72 h improved sperm viability (66.4 ± 2.6 vs 78.1 ± 2.9%; P ≤ 0.01) and total motility (53 ± 5.6 vs 66.3 ± 3.5%; P ≤ 0.05). It is concluded that incubation of stallion spermatozoa with sub-µm-sized GPL micelles results in the incorporation of exogenous GPL into sperm membranes, diminishing lipid peroxidation and improving sperm quality in vitro. Lay summary Sperm collection and storage is an important step in many artificial insemination and in vitro fertilization regimes for several species, including humans and horses. The sperm membrane, which acts as a protective outer barrier, is made up of fatty acid-containing molecules – called phospholipids. These phospholipids may become damaged by waste products generated by the cell, such as hydrogen peroxide, during non-chilled sperm storage. We aimed to determine if sperm cells were able to repair this membrane damage by supplementing them with phospholipids during non-chilled storage. Sperm was collected from five miniature stallions by artificial vagina, and then supplemented with phospholipids during 72 h sperm storage at 17°C. Our studies show that when stallion sperm are supplemented with phospholipids in vitro, they are able to remove their damaged membrane phospholipids and swap them for undamaged ones, aiding in resistance to cellular waste and improving cell health and potential fertility.

4 citations

Journal ArticleDOI
TL;DR: The results show that MTT reduction in stallion spermatozoa follows a species-specific pattern due to a high dependence on oxidative phosphorylation and a degree of NOX activity, which is a useful diagnostic tool to assess extra-mitochondrial redox activity, and therefore, the functional qualities of stallion semen.
Abstract: MTT is a commonly used cell vitality probe, due to its ability to form insoluble formazan deposits at cellular locations of intense oxidoreductase activity. Although this response is considered a reflection of mitochondrial redox activity, extra-mitochondrial sites of MTT reduction have been recognized within the spermatozoa of several mammalian species. Therefore, the aim of this study was to determine the major sites and causative mechanisms of MTT reduction in stallion spermatozoa. Our results show that stallion spermatozoa displayed substantial mitochondrial formazan deposition, as well as a single extra-mitochondrial formazan deposit on various locations on the sperm head in approximately 20% of cells. The quality, and capacitation status of stallion spermatozoa was positively correlated with the presence of an extra-mitochondrial formazan granule. Additionally, extra-mitochondrial formazan deposition was suppressed by the presence of an NADPH oxidase (NOX) inhibitor (VAS2870; active against NOX2, NOX4 and NOX5), MnTMPyP (SOD mimetic), and zinc (NOX5 inhibitor) suggesting that extra-mitochondrial MTT reduction may be facilitated by NOX-mediated ROS generating activity, conceivably NOX5 or NOX2. When comparing MTT to resazurin, another well-known probe used to detect metabolically active cells, MTT reduction had a higher correlation with sperm concentration and motility parameters (R2 = 0.91), than resazurin reduction (R2 = 0.76). We conclude that MTT reduction in stallion spermatozoa follows a species-specific pattern due to a high dependence on oxidative phosphorylation and a degree of NOX activity. As such, MTT reduction is a useful diagnostic tool to assess extra-mitochondrial redox activity, and therefore, the functional qualities of stallion spermatozoa.

2 citations

Journal ArticleDOI
TL;DR: In this article , the analysis of dismount semen samples from Thoroughbred stallions was used to predict whether a given mating would result in a pregnancy, which achieved an overall accuracy of 94.6%.
Abstract: In brief A capacity to predict the likelihood of pregnancy following natural matings would be of considerable benefit to the Thoroughbred horse breeding industry. In this article, we describe a strategy for achieving this outcome through the analysis of dismount samples, that achieved an overall accuracy of 94.6%. Abstract The purpose of this study was to determine whether the analysis of dismount semen samples from Thoroughbred stallions could be used to predict whether a given mating would result in a pregnancy. The analysis was based on 143 matings of 141 mares by a cohort of 7 Thoroughbred stallions over a 4-week period at an Australian Stud. The criteria of semen quality utilized in this analysis involved a preliminary assessment of the raw dismount sample in terms of semen volume, sperm number, and sperm movement characteristics using an iSperm® Equine portable device. Following this initial assessment, a subpopulation of progressively motile spermatozoa was isolated by virtue of the cells ability to migrate across a 5 µm polycarbonate filter in a Samson™ isolation chamber over a 15-minute period. These isolated cells were again evaluated for their number and quality of movement using the iSperm® system and, in addition, assessed for their ability to reduce WST-1, a membrane impermeant tetrazolium salt. These data were then combined with additional information describing the ages of the animals used in this study, their historical breeding records, and mating frequency during the breeding season. The total data set was then used to predict the occurrence of pregnancy, as confirmed by ultrasound at ~14 days post mating. The criteria used to predict fertility in the ensuing multivariate discriminant analysis were optimized for each individual stallion. Using this strategy, we were able to successfully predict the outcome of a cover with an overall accuracy of 94.6%.

1 citations

Journal ArticleDOI
30 Mar 2023-Animals
TL;DR: In this paper , a fertility prediction algorithm for individual stallions in conjunction with the Samson™ system and the reduction of the probe WST-1 was used to predict the likelihood of pregnancy resulting from artificial insemination in mares.
Abstract: Simple Summary The outcome of equine artificial inseminations can be predicted with a high level of accuracy—87.9% if analyzed pre-chilling, and 95% if analyzed post-chilling—by optimizing a fertility prediction algorithm for individual stallions in conjunction with the Samson™ system and the reduction of the probe WST-1. Abstract This study aimed to determine whether an analysis of stallion ejaculate could accurately predict the likelihood of pregnancy resulting from artificial insemination in mares. This study involved 46 inseminations of 41 mares, using 7 standardbred stallions over a 5-week period at an Australian pacing stud. Semen quality was assessed immediately after collection and again after chilling at ~5 °C for 24 h. The assessment involved evaluating ejaculate volume, sperm concentration, and motility parameters using an iSperm® Equine portable device. After the initial evaluation, a subpopulation of cells was subjected to a migration assay through a 5 µm polycarbonate filter within a Samson™ isolation chamber over a 15 min period. The cells were assessed for their concentration, motility parameters, and ability to reduce the membrane impermeant tetrazolium salt WST-1. The data, combined with the stallion and mare’s ages, were used to predict the likelihood of pregnancy, as confirmed by rectal ultrasound sonography performed 14 days post ovulation. The criteria used to predict pregnancy were optimized for each individual stallion, resulting in an overall accuracy of 87.9% if analyzed pre-chilling and 95% if analyzed post-chilling. This study suggests that an analysis of stallion ejaculate can be used to predict the likelihood of pregnancy resulting from artificial insemination in mares with a high level of accuracy.
Journal ArticleDOI
TL;DR: The AI-Port system as mentioned in this paper uses a 5 µm nylon woven membrane to separate a sample chamber and a harvest chamber to isolate functional spermatozoa for artificial insemination.

Cited by
More filters
DOI
29 Nov 2021
TL;DR: Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health.
Abstract: Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane–membrane interactions. The entire process appears to be driven by ‘bulk flow’ or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.

6 citations

Journal ArticleDOI
TL;DR: The ability to store stallion spermatozoa between the events of semen collection and insemination has facilitated improved rates of gain in selective breeding programs by enabling the transport of spermatoza as discussed by the authors .

1 citations

Journal ArticleDOI
TL;DR: Results indicated that compound 12–9 inhibited cell proliferation through PSMB5 and apoptosis through Bcl-2/CASP-3 apoptotic signaling pathways and had good drug-like properties.
Abstract: Ligustrazine (TMP) is a natural pyrazine alkaloid extracted from the roots of Ligusticum Chuanxiong Hort, which has the potential as an antitumor agent. A series of 33 ligustrazine–heterocycle (TMPH) derivatives were designed, synthesized, and investigated via antitumor screening assays, molecular docking analysis, and prediction of drug-like properties. TMP was attached to other heterocyclic derivatives by an 8–12 methylene alkyl chain as a linker to obtain 33 TMPH derivatives. The structures were confirmed by 1H-NMR, 13C-NMR, and high-resolution mass spectroscopy spectral (HR-MS) data. The antiproliferative activity against human breast cancer MCF-7, MDA-MB-231, mouse breast cancer 4T1, mouse fibroblast L929, and human umbilical vein endothelial HUVEC cell lines was evaluated by MTT assay. Compound 12–9 displayed significant inhibitory activity with IC50 values in the low micromolar range (0.84 ± 0.02 µM against the MDA-MB-231 cell line). The antitumor effects of compound 12–9 were further evaluated by plate cloning, Hoechst 33 342 staining, and annexin V-FITC/PI staining. The results indicated that compound 12–9 inhibited the proliferation and apoptosis of breast cancer cells. Furthermore, molecular docking of compound 12–9 into the active site of the Bcl-2, CASP-3, and PSMB5 target proteins was performed to explore the probable binding mode. The 33 newly synthesized compounds were predicted to have good drug-like properties in a theoretical study. Overall, these results indicated that compound 12–9 inhibited cell proliferation through PSMB5 and apoptosis through Bcl-2/CASP-3 apoptotic signaling pathways and had good drug-like properties. These results provided more information, and key precursor lead derivatives, in the search for effective bioactive components from Chinese natural medicines.

1 citations

Journal ArticleDOI
TL;DR: Membrane Lipid Replacement (MLR) uses natural, protected membrane lipid supplements to safely replace damaged, oxidized lipids in cellular membranes in order to restore membrane function, decrease various symptoms and improve health.
Abstract: Abstract: Membrane Lipid Replacement (MLR) uses natural, protected membrane lipid supplements to safely replace damaged, oxidized lipids in cellular membranes in order to restore membrane function, decrease various symptoms and improve health. Membrane injury occurs in essentially all chronic and acute medical conditions as well as in normal aging and development. The repair of damaged cellular membranes, and the removal of impaired membrane lipids and other toxic molecules from cells, are essential to recovery and health. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain and other symptoms in chronic illnesses and aging patients. MLR has also been used in in vitro studies to demonstrate its ability to increase cell motility and resistance to oxidative damage. It also has the ability to enhance the bioavailability of other nutrients and their transport across intestinal epithelial cell barriers.Keywords: membrane phospholipids, lipid transport, lipid oxidation, mitochondrial function, fatigue, pain, chronic disease symptoms, aging

1 citations

Journal ArticleDOI
01 Sep 2022-Genes
TL;DR: It is demonstrated that heat stress can alter the motion characteristics and metabolomic profiles of boar sperm.
Abstract: Heat stress (HS) commonly causes boar infertility and economic loss in the swine industry. The heat tolerance of boar semen presents obvious differences among individuals. However, whether heat stress affects motion characteristics and the metabolome profile in boar sperm remains unclear. In this study, the kinetic features of sperm from HS and non-HS (NHS) groups were detected by computer-assisted sperm analysis, and metabolomic profiling was performed by liquid chromatography–mass spectrometry. The results showed that heat stress significantly reduced sperm motility, average path distance (APD), straight-line velocity (VSL), straightness (STR), and linearity (LIN) (p < 0.05). A total of 528 and 194 metabolites in sperm were identified in the positive and negative ion modes, respectively. Lipids and lipid-like molecules, and organic acids and derivatives were major metabolic classes in the two modes. Furthermore, we separately identified 163 and 171 differential metabolites in the two modes between HS and NHS groups. Clustering analysis further revealed significant metabolic changes in sperm after heat stress. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential metabolites in the two modes were enriched in glycerophospholipid, choline, and alanine, aspartate, and glutamate and lysine metabolism. Taken together, these results demonstrate that heat stress can alter the motion characteristics and metabolomic profiles of boar sperm.