scispace - formally typeset
Search or ask a question
Author

Ashley Gumsley

Bio: Ashley Gumsley is an academic researcher from Lund University. The author has contributed to research in topics: Craton & Mafic. The author has an hindex of 11, co-authored 20 publications receiving 502 citations. Previous affiliations of Ashley Gumsley include University of Johannesburg & University of Silesia in Katowice.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the first Paleoproterozoic global glaciation and the onset of the GOE occurred between ca.
Abstract: The first significant buildup in atmospheric oxygen, the Great Oxidation Event (GOE), began in the early Paleoproterozoic in association with global glaciations and continued until the end of the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact timing of and relationships among these events are debated because of poor age constraints and contradictory stratigraphic correlations. Here, we show that the first Paleoproterozoic global glaciation and the onset of the GOE occurred between ca. 2,460 and 2,426 Ma, ∼100 My earlier than previously estimated, based on an age of 2,426 ± 3 Ma for Ongeluk Formation magmatism from the Kaapvaal Craton of southern Africa. This age helps define a key paleomagnetic pole that positions the Kaapvaal Craton at equatorial latitudes of 11° ± 6° at this time. Furthermore, the rise of atmospheric oxygen was not monotonic, but was instead characterized by oscillations, which together with climatic instabilities may have continued over the next ∼200 My until ≤2,250-2,240 Ma. Ongeluk Formation volcanism at ca. 2,426 Ma was part of a large igneous province (LIP) and represents a waning stage in the emplacement of several temporally discrete LIPs across a large low-latitude continental landmass. These LIPs played critical, albeit complex, roles in the rise of oxygen and in both initiating and terminating global glaciations. This series of events invites comparison with the Neoproterozoic oxygen increase and Sturtian Snowball Earth glaciation, which accompanied emplacement of LIPs across supercontinent Rodinia, also positioned at low latitude.

352 citations

Journal ArticleDOI
TL;DR: The Piet Retief Suite represents part of an intricate magmatic feeder to a major volcanic event which gave rise to the oldest known continental flood basalts on Earth, the Nsuze volcanic rocks as mentioned in this paper.

40 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented 2789 ± 4 Ma and 2787 ± 2 Ma U-Pb isotope dilution- thermal ionization mass spectrometry (ID-TIMS) baddeleyite ages and geochemistry on mafic sills intruding the Witwatersrand Supergroup, and interpreted these sills as feeders to the overlying Klipriviersberg Group flood basalts.
Abstract: U-Pb geochronology on baddeleyite is a powerful technique that can be applied effectively to chronostratigraphy. In southern Africa, the Kaapvaal Craton hosts a well-preserved Mesoarchean to Paleoproterozoic geological record, including the Neoarchean Ventersdorp Supergroup. It overlies the Witwatersrand Supergroup and its world-class gold deposits. The Ventersdorp Supergroup comprises the Klipriviersberg Group, Platberg Group, and Pniel Group. However, the exact timing of formation of the Ventersdorp Supergroup is controversial. Here we present 2789 ± 4 Ma and 2787 ± 2 Ma U-Pb isotope dilution- thermal ionization mass spectrometry (ID-TIMS) baddeleyite ages and geochemistry on mafic sills intruding the Witwatersrand Supergroup, and we interpret these sills as feeders to the overlying Klipriviersberg Group flood basalts. This constrains the age of the Witwatersrand Supergroup and gold mineralization to at least ca. 2.79 Ga. We also report 2729 ± 5 Ma and 2724 ± 7 Ma U-Pb ID-TIMS baddeleyite ages and geochemistry from a mafic sill intruding the Pongola Supergroup and on an east-northeast-trending mafic dike, respectively. These new ages distinguish two of the Ventersdorp Supergroup magmatic events: the Klipriviersberg and Platberg. The Ventersdorp Supergroup can now be shown to initiate and terminate with two large igneous provinces (LIPs), the Klipriviersberg and Allanridge, which are separated by Platberg volcanism and sedimentation. The age of the Klipriviersberg LIP is 2791-2779 Ma, and Platberg volcanism occurred at 2754-2709 Ma. The Allanridge LIP occurred between 2709-2683 Ma. Klipriviersberg, Platberg, and Allanridge magmatism may be genetically related to mantle plume(s). Higher heat flow and crustal melting resulted as a mantle plume impinged below the Kaapvaal Craton lithosphere, and this was associated with rifting and the formation of LIPs. (Less)

36 citations

Journal ArticleDOI
08 Jan 2016-Gff
TL;DR: In this paper, the White Mfolozi Dyke Swarm (WMDS) has been identified on the south-easternmost Kaapvaal Craton, a NE-trending plagioclase-megacrystic dolerite dyke swarm.
Abstract: On the south-easternmost Kaapvaal Craton, a NE-trending plagioclase-megacrystic dolerite dyke swarm, herein named the White Mfolozi Dyke Swarm (WMDS), has been identified. New U–Pb baddeleyite ages presented here indicate that the WMDS was emplaced within less than 10 million years, with our three most robust results yielding a weighted mean age of 2662 ± 2 Ma. The WMDS is coeval with the youngest dykes of a 2.70–2.66 Ga radiating dyke swarm already identified further north on the eastern side of the Kaapvaal Craton. This dyke swarm radiates out from the eastern lobe of the ca. 2.05 Ga Bushveld Complex. A clustering of ages from the WMDS and the 2.70–2.66 Ga radiating dyke swarm identify potential magmatic peaks at 2701–2692 Ma, 2686–2683 Ma and 2665–2659 Ma. Geochemical signatures of the dykes do not correlate with these age groups, but are rather unique to specific areas. The northern part of the eastern Kaapvaal Craton hosts relatively differentiated 2.70–2.66 Ga dolerite dykes that could have ...

30 citations

Journal ArticleDOI
01 Aug 2013-Lithos
TL;DR: In this article, geochronological, geochemical and palaeomagnetic results from the Hlagothi Complex and a NW-trending dolerite dyke swarm on the southeastern region of the Kaapvaal Craton were presented.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere, and that the evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.
Abstract: Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.

408 citations

Journal ArticleDOI
TL;DR: It is shown that the first Paleoproterozoic global glaciation and the onset of the GOE occurred between ca.
Abstract: The first significant buildup in atmospheric oxygen, the Great Oxidation Event (GOE), began in the early Paleoproterozoic in association with global glaciations and continued until the end of the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact timing of and relationships among these events are debated because of poor age constraints and contradictory stratigraphic correlations. Here, we show that the first Paleoproterozoic global glaciation and the onset of the GOE occurred between ca. 2,460 and 2,426 Ma, ∼100 My earlier than previously estimated, based on an age of 2,426 ± 3 Ma for Ongeluk Formation magmatism from the Kaapvaal Craton of southern Africa. This age helps define a key paleomagnetic pole that positions the Kaapvaal Craton at equatorial latitudes of 11° ± 6° at this time. Furthermore, the rise of atmospheric oxygen was not monotonic, but was instead characterized by oscillations, which together with climatic instabilities may have continued over the next ∼200 My until ≤2,250-2,240 Ma. Ongeluk Formation volcanism at ca. 2,426 Ma was part of a large igneous province (LIP) and represents a waning stage in the emplacement of several temporally discrete LIPs across a large low-latitude continental landmass. These LIPs played critical, albeit complex, roles in the rise of oxygen and in both initiating and terminating global glaciations. This series of events invites comparison with the Neoproterozoic oxygen increase and Sturtian Snowball Earth glaciation, which accompanied emplacement of LIPs across supercontinent Rodinia, also positioned at low latitude.

352 citations

Journal ArticleDOI
TL;DR: In this paper, a mass extinction link between large Igneous provinces (LIPs) and global climate change is investigated. But the specific effects, their severity, and their time sequencing are specific to each LIP.

285 citations

Journal ArticleDOI
TL;DR: Sedimentary, igneous and metamorphic proxies along with palaeomagnetic data are reviewed to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean.
Abstract: Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of...

265 citations