scispace - formally typeset
Search or ask a question
Author

Ashok Kumar

Bio: Ashok Kumar is an academic researcher from University of South Florida. The author has contributed to research in topics: Thin film & Pulsed laser deposition. The author has an hindex of 19, co-authored 76 publications receiving 1899 citations. Previous affiliations of Ashok Kumar include SRI International & University of South Alabama.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the CMP process in general, the science and mechanism of polishing, different metal and dielectric CMP processes as well as the future trends are discussed in this paper.
Abstract: The progressively decreasing feature size of the circuit components has tremendously increased the need for the global surface planarization of the various thin film layers that constitute the integrated circuit (IC). Global planarization, being one of the major solutions to meet the demands of the industry, needs to be achieved following the most efficient polishing procedure. Chemical mechanical polishing (CMP) is the planarization method that has been selected by the semiconductor industry today. CMP, an ancient process used for glass polishing, was adopted first as a microelectronic fabrication process by IBM in the 80 s for SiO2 polishing. To achieve efficient planarization at miniaturized device dimensions, there is a need for a better understanding of the physics, chemistry and the complex interplay of tribo-mechanical phenomena occurring at the interface of the pad and wafer in presence of the fluid slurry medium. In spite of the fact that CMP research has grown by leaps and bounds, there are some teething problems associated with CMP process such as delamination, microscratches, dishing, erosion, corrosion, inefficient post-CMP clean, etc.; research on which is still developing. The fundamental understanding of the CMP is highly necessary to characterize, optimize and model the process. The CMP process is ready to make a positive impact on 30% of the US$ 135 billion global semiconductor market. This paper presents an overview of CMP process in general, the science and mechanism of polishing, different metal and dielectric CMP processes. The impact of consumables on the CMP process, post-CMP cleaning, modeling of different CMP processes as well as the future trends are also discussed.

533 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the application of nanostructured materials for storing atomic or molecular hydrogen is presented, where the synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed.
Abstract: Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc.) and their hydrogen storage characteristics are outlined.

205 citations

Journal ArticleDOI
TL;DR: Graphene films and ribbons were grown on Ni-coated Si substrates using the microwave plasma enhanced chemical vapor deposition method, and the structure, morphology, and quality of graphene films and ribbon were reported in this article.
Abstract: Graphene films and ribbons were grown on Ni-coated Si substrates using the microwave plasma enhanced chemical vapor deposition method. We report the structure, morphology, and quality of graphene films and ribbons. The semiconducting nature of the CVD-grown graphene was observed by studying resistance−temperature variation in the range 25 to 200 °C, using the four-point probe method. Graphene exhibited an increase of resistance upon exposure of CO and a decrease in resistance upon pure O2 and NO2 exposures. It was observed that graphene films show sensor signal ∼3 and 35 for 100 ppm of CO and 100 ppm of NO2 whereas the graphene ribbons show the sensor signal values of 1.5 and 18 for 100 ppm of CO and 100 ppm of NO2. The gas sensor mechanism was observed to be mainly dependent on the charge carrier transfer on conducting graphene surfaces caused by the adsorption of gases.

191 citations

Journal ArticleDOI
TL;DR: Carbon nanotubes (CNTs) were functionalized and employed in an electrochemical cell to serve as a biosensor to specifically detect either lactate or pH in an electrolyte solution of artificial sweat as discussed by the authors.
Abstract: Carbon nanotubes (CNTs) were functionalized and employed in an electrochemical cell to serve as a biosensor to specifically detect either lactate or pH in an electrolyte solution of artificial sweat. They were functionalized with the carboxyl group ( COOH) to detect pH and the enzyme lactate oxidase (LOX) to detect lactate. All CNT samples were characterized to compare the electrodes before and after functionalization. Fourier transform infrared spectroscopy (FTIR) was used to verify the attachment of both COOH and LOX to the respective carbon nanotubes samples. Scanning electron microscopy (SEM) was used to examine the structure of the CNT–lactate electrode. Square wave voltammetry proved to be the best template to use to sense these target analytes. The functionalized CNT–COOH electrode displayed a linear response to pH 1–10, with a negative voltage shift corresponding to an increase in pH. Two types of lactate sensors were fabricated, both of which exhibited an increase in current corresponding to an increase in lactate concentration. The functionalized CNT–LOX on a glassy carbon electrode displayed an amperometric response in the range of 1–4 mM lactate. The CNT–LOX on a silicon/indium tin oxide (Si/ITO) substrate displayed an amperometric response in the range of 0.01–0.05 M lactate.

92 citations

Journal ArticleDOI
TL;DR: In this paper, single-wall carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) composites were fabricated and exposed to ionizing radiation for a total dose of 5.9 Mrads.
Abstract: Single-wall carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) composites were fabricated and exposed to ionizing radiation for a total dose of 5.9 Mrads. Neat nanotube paper and pure PMMA were also exposed for comparison, and nonirradiated samples served as controls. A concentration of 0.26 wt% SWNT increased the glass transition temperature (T g), the Vickers hardness number, and modulus of the matrix. Irradiation of the composite did not significantly change the T g, the Vickers hardness number, or the modulus; however, the real and imaginary parts of the complex permittivity increased after irradiation. The dielectric properties were found to be more labile to radiation effects than mechanical properties.

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
TL;DR: Graphene and its derivatives are being studied in nearly every field of science and engineering as mentioned in this paper, and recent progress has shown that the graphene-based materials can have a profound impact on electronic and optoelectronic devices, chemical sensors, nanocomposites and energy storage.

3,118 citations

Journal ArticleDOI
TL;DR: Chemical Vapour Deposition (CVD) involves the chemical reactions of gaseous reactants on or near the vicinity of a heated substrate surface as mentioned in this paper, which can provide highly pure materials with structural control at atomic or nanometer scale level.

1,379 citations

Journal ArticleDOI
TL;DR: This critical review, from the viewpoint of chemistry and materials, will cover recent significant advances in synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications of the "star-material" GN together with discussion on its major challenges and opportunities for future GN research.
Abstract: The emergence of graphene nanosheet (GN, 2010 Nobel Prize for Physics) has recently opened up an exciting new field in the science and technology of two-dimensional (2D) nanomaterials with continuously growing academic and technological impetus. GN exhibits unique electronic, optical, magnetic, thermal and mechanical properties arising from its strictly 2D structure and thus has many important technical applications. Actually, GN-based materials have enormous potential to rival or even surpass the performance of carbon nanotube-based counterparts, given that cheap, large-scale production and processing methods for high-quality GN become available. Therefore, the studies on GN in the aspects of chemistry, physical, materials, biology and interdisciplinary science have been in full flow in the past five years. In this critical review, from the viewpoint of chemistry and materials, we will cover recent significant advances in synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications of the “star-material” GN together with discussion on its major challenges and opportunities for future GN research (315 references).

1,183 citations

Journal ArticleDOI
TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Abstract: Graphene-based materials are gaining heightened attention as novel materials for environmental applications The unique physicochemical properties of graphene, notably its exceptionally high surface area, electron mobility, thermal conductivity, and mechanical strength, can lead to novel or improved technologies to address the pressing global environmental challenges This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal The most promising areas of research are highlighted, with a discussion of the main challenges that we need to overcome in order to fully realize the exceptional properties of graphene in environmental applications

1,158 citations