scispace - formally typeset
Search or ask a question
Author

Ashok V. Krishnamoorthy

Bio: Ashok V. Krishnamoorthy is an academic researcher from Business International Corporation. The author has contributed to research in topics: Silicon photonics & CMOS. The author has an hindex of 46, co-authored 367 publications receiving 9039 citations. Previous affiliations of Ashok V. Krishnamoorthy include Southern Methodist University & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
10 Jun 2009
TL;DR: The power dissipation of a photonic link is explored, a roadmap to lower the energy-per-bit of silicon photonic interconnects is suggested, and the challenges that will be faced by device and circuit designers towards this goal are identified.
Abstract: We present a computing microsystem that uniquely leverages the bandwidth, density, and latency advantages of silicon photonic interconnect to enable highly compact supercomputer-scale systems. We describe and justify single-node and multinode systems interconnected with wavelength-routed optical links, quantify their benefits vis-a-vis electrically connected systems, analyze the constituent optical component and system requirements, and provide an overview of the critical technologies needed to fulfill this system vision. This vision calls for more than a hundredfold reduction in energy to communicate an optical bit of information. We explore the power dissipation of a photonic link, suggest a roadmap to lower the energy-per-bit of silicon photonic interconnects, and identify the challenges that will be faced by device and circuit designers towards this goal.

467 citations

Journal ArticleDOI
TL;DR: The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without undercuts.
Abstract: We present thermally tunable silicon racetrack resonators with an ultralow tuning power of 2.4 mW per free spectral range. The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without undercuts. The 10%-90% switching time is demonstrated to be ~170 µs. Such low-power tunable micro-resonators are particularly useful as multiplexing devices and wavelength-tunable silicon microcavity modulators.

341 citations

Journal ArticleDOI
TL;DR: Silicon photonics that utilizes scalable CMOS technology may offer a highly integrated photonics transmission platform for such applications as data centres and telecommunications networks.
Abstract: Scaling IT infrastructure from microscale processors to macroscale data centres and telecommunications networks requires high-bandwidth technologies that are cheap, low-power and small. Silicon photonics that utilizes scalable CMOS technology may offer a highly integrated photonics transmission platform for such applications.

306 citations

Journal ArticleDOI
TL;DR: An important general conclusion is that, unlike electrical interconnects, such dense optical interconnections directly to an electronic circuit will likely be able to scale in capacity to match the improved performance of future CMOS technology.
Abstract: Technologies now exist for implementing dense surface-normal optical interconnections for silicon CMOS VLSI using hybrid integration techniques. The critical factors in determining the performance of the resulting photonic chip are the yield on the transceiver device arrays, the sensitivity and power dissipation of the receiver and transmitter circuits, and the total optical power budget available. The use of GaAs-AlGaAs multiple-quantum-well p-i-n diodes for on-chip detection and modulation is one effective means of implementing the optoelectronic transceivers. We discuss a potential roadmap for the scaling of this hybrid optoelectronic VLSI technology as CMOS linewidths shrink and the characteristics of the hybrid optoelectronic transceiver technology improve. An important general conclusion is that, unlike electrical interconnects, such dense optical interconnections directly to an electronic circuit will likely be able to scale in capacity to match the improved performance of future CMOS technology.

250 citations

Journal ArticleDOI
TL;DR: A high-speed ring modulator that fits many of the ideal qualities for optical interconnect in future exascale supercomputers and fits in a compact 400 μm2 footprint is reported.
Abstract: We report a high-speed ring modulator that fits many of the ideal qualities for optical interconnect in future exascale supercomputers. The device was fabricated in a 130nm SOI CMOS process, with 7.5μm ring radius. Its high-speed section, employing PN junction that works at carrier-depletion mode, enables 25Gb/s modulation and an extinction ratio >5dB with only 1V peak-to-peak driving. Its thermal tuning section allows the device to work in broad wavelength range, with a tuning efficiency of 0.19nm/mW. Based on microwave characterization and circuit modeling, the modulation energy is estimated ~7fJ/bit. The whole device fits in a compact 400μm2 footprint.

232 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: In this paper, the double heterojunction was proposed to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved, and a full optical and electrical analysis of the double-heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials.
Abstract: In this review, we discuss the physics underlying the operation of single and multiple heterojunction, vacuum-deposited organic solar cells based on small molecular weight thin films. For single heterojunction cells, we find that the need for direct contact between the deposited electrode and the active organics leads to quenching of excitons. An improved device architecture, the double heterojunction, is shown to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved. A full optical and electrical analysis of the double heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials. Combining the double heterostructure with novel light trapping schemes, devices with external efficiencies approaching their internal efficiency are obtained. When applied to an organic photovoltaic cell with a power conversion efficiency of 1.0%±0.1% under 1 sun AM1.5 illuminati...

2,722 citations

Journal ArticleDOI
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

2,110 citations

Journal ArticleDOI
TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,989 citations

Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations