scispace - formally typeset
Search or ask a question
Author

Ashoka Savasere

Bio: Ashoka Savasere is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Association rule learning & Overhead (computing). The author has an hindex of 4, co-authored 4 publications receiving 2167 citations.

Papers
More filters
Proceedings Article
11 Sep 1995
TL;DR: This paper presents an efficient algorithm for mining association rules that is fundamentally different from known algorithms and not only reduces the I/O overhead significantly but also has lower CPU overhead for most cases.
Abstract: Mining for a.ssociation rules between items in a large database of sales transactions has been described as an important database mining problem. In this paper we present an efficient algorithm for mining association rules that is fundamentally different from known algorithms. Compared to previous algorithms, our algorithm not only reduces the I/O overhead significantly but also has lower CPU overhead for most cases. We have performed extensive experiments and compared the performance of our algorithm with one of the best existing algorithms. It was found that for large databases, the CPU overhead was reduced by as much as a factor of four and I/O was reduced by almost an order of magnitude. Hence this algorithm is especially suitable for very large size databases.

1,822 citations

Proceedings ArticleDOI
23 Feb 1998
TL;DR: An algorithm is described that efficiently finds all such negative associations by combining previously discovered positive associations with domain knowledge to constrain the search space such that fewer but more interesting negative rules are mined.
Abstract: Mining for association rules is considered an important data mining problem. Many different variations of this problem have been described in the literature. We introduce the problem of mining for negative associations. A naive approach to finding negative associations leads to a very large number of rules with low interest measures. We address this problem by combining previously discovered positive associations with domain knowledge to constrain the search space such that fewer but more interesting negative rules are mined. We describe an algorithm that efficiently finds all such negative associations and present the experimental results.

320 citations

Book ChapterDOI
06 Jul 1998
TL;DR: This paper presents an efficient algorithm for mining association rules within the context of a dynamic database, (i.e., a database where transactions can be added) and is an extension of the Partition algorithm which was shown to reduce the I/O overhead significantly as well as to lower the CPU overhead for most cases when compared with the performance of one of the best existing association mining algorithms.
Abstract: Mining for association rules between items in a large database of sales transactions is an important database mining problem. However, the algorithms previously reported in the literature apply only to static databases. That is, when more transactions are added, the mining process must start all over again, without taking advantage of the previous execution and results of the mining algorithm. In this paper we present an efficient algorithm for mining association rules within the context of a dynamic database, (i.e., a database where transactions can be added). It is an extension of our Partition algorithm which was shown to reduce the I/O overhead significantly as well as to lower the CPU overhead for most cases when compared with the performance of one of the best existing association mining algorithms.

24 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
16 May 2000
TL;DR: This study proposes a novel frequent pattern tree (FP-tree) structure, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, and develops an efficient FP-tree-based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth.
Abstract: Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we propose a novel frequent pattern tree (FP-tree) structure, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree-based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth. Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a highly condensed, much smaller data structure, which avoids costly, repeated database scans, (2) our FP-tree-based mining adopts a pattern fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported new frequent pattern mining methods.

6,118 citations

01 Jan 2006
TL;DR: There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99].
Abstract: The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99], Building Data Mining Applications for CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning Tools and Techniques by Witten and Frank [WF05], Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01], The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF01], Data Mining: Introductory and Advanced Topics by Dunham, and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03]. There are also books containing collections of papers on particular aspects of knowledge discovery, such as Machine Learning and Data Mining: Methods and Applications edited by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major database, data mining and machine learning conferences.

2,591 citations

Journal ArticleDOI
TL;DR: A novel frequent-pattern tree (FP-tree) structure is proposed, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, and an efficient FP-tree-based mining method, FP-growth, is developed for mining the complete set of frequent patterns by pattern fragment growth.
Abstract: Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist a large number of patterns and/or long patterns. In this study, we propose a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree-based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth. Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a condensed, smaller data structure, FP-tree which avoids costly, repeated database scans, (2) our FP-tree-based mining adopts a pattern-fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported new frequent-pattern mining methods.

2,567 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of the available data mining techniques is provided and a comparative study of such techniques is presented, based on a database researcher's point-of-view.
Abstract: Mining information and knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Researchers in many different fields have shown great interest in data mining. Several emerging applications in information-providing services, such as data warehousing and online services over the Internet, also call for various data mining techniques to better understand user behavior, to improve the service provided and to increase business opportunities. In response to such a demand, this article provides a survey, from a database researcher's point of view, on the data mining techniques developed recently. A classification of the available data mining techniques is provided and a comparative study of such techniques is presented.

2,327 citations