scispace - formally typeset
Search or ask a question
Author

Ashutosh K. Singh

Bio: Ashutosh K. Singh is an academic researcher from Banaras Hindu University. The author has contributed to research in topics: Ionosphere & Very low frequency. The author has an hindex of 13, co-authored 49 publications receiving 878 citations. Previous affiliations of Ashutosh K. Singh include Memorial University of Newfoundland.


Papers
More filters
Journal ArticleDOI
TL;DR: The present ethnobotanical exploration study presents the folk medicinal uses of certain plants by tribes of the Sonbhadra district in the Uttar Pradesh state of India.

185 citations

Journal ArticleDOI
01 Jan 2009-Carbon
TL;DR: In this article, a steady-state anodic Tafel polarization study showed that small introduction of MWCNTs to Pd increases the apparent electrocatalytic activity greatly, the magnitude of enhancement being the greatest (∼26 times) with 1%MWCNT.

184 citations

Journal ArticleDOI
TL;DR: In this paper, a spinel-type oxides with molecular formulae MMoO4 (M = Fe, Co and Ni) were prepared by a thermal decomposition method at 650°C and investigated as electrocatalysts for the O2 evolution reaction (OER) in KOH solutions.

86 citations

Journal ArticleDOI
TL;DR: In this paper, a coherent picture of possible origin of Asian aerosol, transport and meteorological interaction; wintertime aerosol (January, 1 to March, 31, 2014 (n = 90)) were measured in middle IGP in terms of aerosol mass loading, optical properties, altitudinal distributions and both high and low altitude transportation.

70 citations

Journal ArticleDOI
TL;DR: In this paper, perovskite-type ternary oxides with molecular formulae were prepared by a modified citric acid sol-gel route at 600°C for their possible use in a direct methanol fuel cell (DMFC).

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review presents recent advances in microAlgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production and aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.

1,662 citations

Journal ArticleDOI
TL;DR: In this paper, an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells).
Abstract: This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current state-of-the-art, technological and scientific limitations, and the future challenges (research priorities) related to the use of anion-exchange membranes in these energy technologies. All the references that the authors deemed relevant, and were available on the web by the manuscript submission date (30th April 2014), are included.

1,526 citations

Journal ArticleDOI
TL;DR: In this article, a review compares and unifies viewpoints on water oxidation from various fields of catalysis research, including thermodynamic efficiency and mechanisms of electrochemical water splitting by metal oxides on electrode surfaces, explaining the recent concept of the potential determining step.
Abstract: Striving for new solar fuels, the water oxidation reaction currently is considered to be a bottleneck, hampering progress in the development of applicable technologies for the conversion of light into storable fuels. This review compares and unifies viewpoints on water oxidation from various fields of catalysis research. The first part deals with the thermodynamic efficiency and mechanisms of electrochemical water splitting by metal oxides on electrode surfaces, explaining the recent concept of the potential-determining step. Subsequently, novel cobalt oxide-based catalysts for heterogeneous (electro)catalysis are discussed. These may share structural and functional properties with surface oxides, multinuclear molecular catalysts and the catalytic manganese–calcium complex of photosynthetic water oxidation. Recent developments in homogeneous water-oxidation catalysis are outlined with a focus on the discovery of mononuclear ruthenium (and non-ruthenium) complexes that efficiently mediate O2 evolution from water. Water oxidation in photosynthesis is the subject of a concise presentation of structure and function of the natural paragon—the manganese–calcium complex in photosystem II—for which ideas concerning redox-potential leveling, proton removal, and OO bond formation mechanisms are discussed. The last part highlights common themes and unifying concepts.

1,450 citations

Journal ArticleDOI
TL;DR: Increasing research efforts are carried out to design and develop more efficient anode electrocatalysts for DAFCs, which are attracting increasing interest as power sources for portable applications.
Abstract: Direct alcohol fuel cells (DAFCs) are attracting increasing interest as power sources for portable applications due to some unquestionable advantages over analogous devices fed with hydrogen.1 Alcohols, such as methanol, ethanol, ethylene glycol, and glycerol, exhibit high volumetric energy density, and their storage and transport are much easier as compared to hydrogen. On the other hand, the oxidation kinetics of any alcohol are much slower and still H2-fueled polymer electrolyte fuel cells (PEMFCs) exhibit superior electrical performance as compared to DAFCs with comparable electroactive surface areas.2,3 Increasing research efforts are therefore being carried out to design and develop more efficient anode electrocatalysts for DAFCs.

1,427 citations

Journal ArticleDOI
TL;DR: In this article, the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances are presented.
Abstract: Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe-based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries. Open image in new window

1,138 citations