scispace - formally typeset
Search or ask a question
Author

Ashutosh Shandilya

Other affiliations: Indian Institutes of Technology
Bio: Ashutosh Shandilya is an academic researcher from Indian Institute of Technology Delhi. The author has contributed to research in topics: Docking (molecular) & CDC37. The author has an hindex of 15, co-authored 24 publications receiving 754 citations. Previous affiliations of Ashutosh Shandilya include Indian Institutes of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: This study attempts to explore NF-κB signalling pathway modulating capability of Withania somnifera’s major constituent WA and to elucidate its possible mode of action using molecular docking and molecular dynamics simulations studies.
Abstract: Nuclear Factor kappa B (NF-κB) is a transcription factor involved in the regulation of cell signaling responses and is a key regulator of cellular processes involved in the immune response, differentiation, cell proliferation, and apoptosis. The constitutive activation of NF-κB contributes to multiple cellular outcomes and pathophysiological conditions such as rheumatoid arthritis, asthma, inflammatory bowel disease, AIDS and cancer. Thus there lies a huge therapeutic potential beneath inhibition of NF-κB signalling pathway for reducing these chronic ailments. Withania somnifera, a reputed herb in ayurvedic medicine, comprises a large number of steroidal lactones known as withanolides which show plethora of pharmacological activities like anti- inflammatory, antitumor, antibacterial, antioxidant, anticonvulsive, and immunosuppressive. Though a few studies have been reported depicting the effect of WA (withaferin A) on suppression of NF-κB activation, the mechanism behind this is still eluding the researchers. The study conducted here is an attempt to explore NF-κB signalling pathway modulating capability of Withania somnifera’s major constituent WA and to elucidate its possible mode of action using molecular docking and molecular dynamics simulations studies. Formation of active IKK (IκB kinase) complex comprising NEMO (NF-κB Essential Modulator) and IKKβ subunits is one of the essential steps for NF-κB signalling pathway, non-assembly of which can lead to prevention of the above mentioned vulnerable disorders. As observed from our semi-flexible docking analysis, WA forms strong intermolecular interactions with the NEMO chains thus building steric as well as thermodynamic barriers to the incoming IKKβ subunits, which in turn pave way to naive complex formation capability of NEMO with IKKβ. Docking of WA into active NEMO/IKKβ complex using flexible docking in which key residues of the complex were kept flexible also suggest the disruption of the active complex. Thus the molecular docking analysis of WA into NEMO and active NEMO/IKKβ complex conducted in this study provides significant evidence in support of the proposed mechanism of NF-κB activation suppression by inhibition or disruption of active NEMO/IKKβ complex formation being accounted by non-assembly of the catalytically active NEMO/IKKβ complex. Results from the molecular dynamics simulations in water show that the trajectories of the native protein and the protein complexed with WA are stable over a considerably long time period of 2.6 ns. NF-κB is one of the most attractive topics in current biological, biochemical, and pharmacological research, and in the recent years the number of studies focusing on its inhibition/regulation has increased manifolds. Small ligands (both natural and synthetic) are gaining particular attention in this context. Our computational analysis provided a rationalization of the ability of naturally occurring withaferin A to alter the NF-κB signalling pathway along with its proposed mode of inhibition of the pathway. The absence of active IKK multisubunit complex would prevent degradation of IκB proteins, as the IκB proteins would not get phosphorylated by IKK. This would ultimately lead to non-release of NF-κB and its further translocation to the nucleus thus arresting its nefarious acts. Conclusively our results strongly suggest that withaferin A is a potent anticancer agent as ascertained by its potent NF-κB modulating capability. Moreover the present MD simulations made clear the dynamic structural stability of NEMO/IKKβ in complex with the drug WA, together with the inhibitory mechanism.

98 citations

Journal ArticleDOI
TL;DR: Results suggest that artemisinin gets activated by iron which in turn inhibits PfATP6 by closing the phosphorylation, nucleotide binding and actuator domains leading to loss of function of PfATp6 of the parasite and its death.
Abstract: Artemisinin constitutes the frontline treatment to aid rapid clearance of parasitaemia and quick resolution of malarial symptoms. However, the widespread promiscuity about its mechanism of action is baffling. There is no consensus about the biochemical target of artemisinin but recent studies implicate haem and PfATP6 (a calcium pump). We investigated the role of iron and artemisinin on PfATP6, in search of a plausible mechanism of action, via density functional theory calculations, docking and molecular dynamics simulations. Results suggest that artemisinin gets activated by iron which in turn inhibits PfATP6 by closing the phosphorylation, nucleotide binding and actuator domains leading to loss of function of PfATP6 of the parasite and its death. The mechanism elucidated here should help in the design of novel antimalarials.

88 citations

Journal ArticleDOI
TL;DR: The study conducted here is an attempt to explore the potential of Withania somnifera’s major constituent WA (Withaferin A) in attenuating the Hsp90/Cdc37 chaperone/co-chaperone interactions for enhanced tumor arresting activity and to elucidate the underlying mode of action using computational approaches.
Abstract: HSPs (Heat shock proteins) are highly conserved ubiquitous proteins among species which are involved in maintaining appropriate folding and conformation of other proteins and are thus referred to as molecular chaperones. Hsp90 (Heat-shock protein 90 kDa) is one of a group of molecular chaperones responsible for managing protein folding and quality control in cell environment. However it is also involved in the maturation and stabilization of a wide range of oncogenic client proteins which are crucial for oncogenesis and malignant progression. Hsp90 requires a series of co-chaperones to assemble into a super-chaperone complex for its function. These co-chaperones bind and leave the complex at various stages to regulate the chaperoning process. Arresting the chaperone cycle at these stages by targeting different co-chaperone/Hsp90 interactions seems to be quite a viable alternative and is likely to achieve similar consequences as that of Hsp90 direct inhibition with added favors of high specificity and reduced side effect profile. The study conducted here is an attempt to explore the potential of Withania somnifera’s major constituent WA (Withaferin A) in attenuating the Hsp90/Cdc37 chaperone/co-chaperone interactions for enhanced tumor arresting activity and to elucidate the underlying mode of action using computational approaches. Formation of active Hsp90/Cdc37 complex is one of the essential steps for facilitation of chaperone client interaction, non-assembly of which can lead to prevention of the chaperone-client association resulting in apoptosis of tumor cells. From our flexible docking analysis of WA into active Hsp90/Cdc37 complex in which key interfacing residues of the complex were kept flexible, disruption of the active association complex can be discerned. While docking of WA into segregated Hsp90 leaves the interface residues untouched. Thus the molecular docking analysis of WA into Hsp90 and active Hsp90/Cdc37 complex conducted in this study provides significant evidence in support of the proposed mechanism of chaperone assembly suppression by inhibition or disruption of active Hsp90/Cdc37 complex formation being accounted by non-assembly of the catalytically active Hsp90/Cdc37 complex. Results from the molecular dynamics simulations in water show that the trajectories of the protein complexed with ligand WA are stable over a considerably long time period of 4 ns, with the energies of the complex being lowered in comparison to the un-docked association complex, suggesting the thermodynamic stability of WA complexed Hsp90/Cdc37. The molecular chaperone Hsp90 has been a promising target for cancer therapy. Cancer is a disease marked by genetic instability. Thus specific inhibition of individual proteins or signalling pathways holds a great potential for subversion of this genetic plasticity of cancers. This study is a step forward in this direction. Our computational analysis provided a rationalization to the ability of naturally occurring WA to alter the chaperone signalling pathway. The large value of binding energy involved in binding of WA to the active Hsp90/Cdc37 complex consolidates the thermodynamic stability of the binding. Our docking results obtained substantiate the hypothesis that WA has the potential to inhibit the association of chaperone (Hsp90) to its co-chaperone (Cdc37) by disrupting the stability of attachment of Hsp90 to Cdc37. Conclusively our results strongly suggest that withaferin A is a potent anticancer agent as ascertained by its potent Hsp90-client modulating capability.

80 citations

Journal ArticleDOI
TL;DR: In insights into designing a new inspired curcumin derivatives as therapeutic agents against many life-threatening diseases, the interaction ofCurcumin with human CAMK4 is studied using molecular docking, molecular dynamics simulations, fluorescence binding, and surface plasmon resonance (SPR) methods.
Abstract: Calcium–calmodulin-dependent protein kinase IV (CAMK4) plays significant role in the regulation of calcium-dependent gene expression, and thus, it is involved in varieties of cellular functions such as cell signaling and neuronal survival. On the other hand, curcumin, a naturally occurring yellow bioactive component of turmeric possesses wide spectrum of biological actions, and it is widely used to treat atherosclerosis, diabetes, cancer, and inflammation. It also acts as an antioxidant. Here, we studied the interaction of curcumin with human CAMK4 at pH 7.4 using molecular docking, molecular dynamics (MD) simulations, fluorescence binding, and surface plasmon resonance (SPR) methods. We performed MD simulations for both neutral and anionic forms of CAMK4-curcumin complexes for a reasonably long time (150 ns) to see the overall stability of the protein–ligand complex. Molecular docking studies revealed that the curcumin binds in the large hydrophobic cavity of kinase domain of CAMK4 through several hydrop...

70 citations

Journal ArticleDOI
TL;DR: A molecular interaction basis that could be used for screening and development of anticancer drugs with low toxicity to normal cells is established and accurate knowledge of the 3D structure of mortalin would further enhance the potential of such analyses to understand the molecular basis ofmortalin biology and mortalin based cancer therapy.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Derivatives of QHS, such as dihydroqinghaosu, artemether, and the water-soluble sodium artesunate, appear to be more potent than QHS itself, and offer promise as a totally new class of antimalarials.
Abstract: The herb Artemisia annua has been used for many centuries in Chinese traditional medicine as a treatment for fever and malaria. In 1971, Chinese chemists isolated from the leafy portions of the plant the substance responsible for its reputed medicinal action. This compound, called qinghaosu (QHS, artemisinin), is a sesquiterpene lactone that bears a peroxide grouping and, unlike most other antimalarials, lacks a nitrogen-containing heterocyclic ring system. The compound has been used successfully in several thousand malaria patients in China, including those with both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Derivatives of QHS, such as dihydroqinghaosu, artemether, and the water-soluble sodium artesunate, appear to be more potent than QHS itself. Sodium artesunate acts rapidly in restoring to consciousness comatose patients with cerebral malaria. Thus QHS and its derivatives offer promise as a totally new class of antimalarials.

389 citations

Journal ArticleDOI
TL;DR: A systematic overview of the literature published over the past two decades until the end of 2016 on artemisinin (ARS), which has been developed as antimalarial drug and is used worldwide, finds that ARS-type drugs also reveal anticancer in vitro and in vivo.

375 citations

Journal ArticleDOI

360 citations

Journal ArticleDOI
TL;DR: The different synthetic approaches to synthesize propargylamines, such as A3 couplings and C-H functionalization of alkynes, have been described and organized on the basis of the catalysts employed in the syntheses.
Abstract: Propargylamines are a versatile class of compounds which find broad application in many fields of chemistry. This review aims to describe the different strategies developed so far for the synthesis of propargylamines and their derivatives as well as to highlight their reactivity and use as building blocks in the synthesis of chemically relevant organic compounds. In the first part of the review, the different synthetic approaches to synthesize propargylamines, such as A3 couplings and C–H functionalization of alkynes, have been described and organized on the basis of the catalysts employed in the syntheses. Both racemic and enantioselective approaches have been reported. In the second part, an overview of the transformations of propargylamines into heterocyclic compounds such as pyrroles, pyridines, thiazoles, and oxazoles, as well as other relevant organic derivatives, is presented.

298 citations

Journal ArticleDOI
TL;DR: The range of anti-malarial medicines developed over the years are reviewed, beginning with the discovery of quinine in the early 1800s, through to modern day ACT and the recently-approved tafenoquine.
Abstract: Great progress has been made in recent years to reduce the high level of suffering caused by malaria worldwide. Notably, the use of insecticide-treated mosquito nets for malaria prevention and the use of artemisinin-based combination therapy (ACT) for malaria treatment have made a significant impact. Nevertheless, the development of resistance to the past and present anti-malarial drugs highlights the need for continued research to stay one step ahead. New drugs are needed, particularly those with new mechanisms of action. Here the range of anti-malarial medicines developed over the years are reviewed, beginning with the discovery of quinine in the early 1800s, through to modern day ACT and the recently-approved tafenoquine. A number of new potential anti-malarial drugs currently in development are outlined, along with a description of the hit to lead campaign from which it originated. Finally, promising novel mechanisms of action for these and future anti-malarial medicines are outlined.

254 citations