scispace - formally typeset
Search or ask a question
Author

Asif Ekbal

Bio: Asif Ekbal is an academic researcher from Indian Institute of Technology Patna. The author has contributed to research in topics: Computer science & Conditional random field. The author has an hindex of 35, co-authored 365 publications receiving 4579 citations. Previous affiliations of Asif Ekbal include Jadavpur University & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The CHEMDNER corpus is presented, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task.
Abstract: The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/

368 citations

Journal ArticleDOI
TL;DR: A stacked ensemble method for predicting the degree of intensity for emotion and sentiment by combining the outputs obtained from several deep learning and classical feature-based models using a multi-layer perceptron network is proposed.
Abstract: Emotions and sentiments are subjective in nature. They differ on a case-to-case basis. However, predicting only the emotion and sentiment does not always convey complete information. The degree or level of emotions and sentiments often plays a crucial role in understanding the exact feeling within a single class (e.g., `good' versus `awesome'). In this paper, we propose a stacked ensemble method for predicting the degree of intensity for emotion and sentiment by combining the outputs obtained from several deep learning and classical feature-based models using a multi-layer perceptron network. We develop three deep learning models based on convolutional neural network, long short-term memory and gated recurrent unit and one classical supervised model based on support vector regression. We evaluate our proposed technique for two problems, i.e., emotion analysis in the generic domain and sentiment analysis in the financial domain. The proposed model shows impressive results for both the problems. Comparisons show that our proposed model achieves improved performance over the existing state-of-the-art systems.

184 citations

Book ChapterDOI
TL;DR: A manually annotated dataset of 10,700 social media posts and articles of real and fake news on COVID-19 is curate and released, and four machine learning baselines are benchmarked.
Abstract: Along with COVID-19 pandemic we are also fighting an `infodemic'. Fake news and rumors are rampant on social media. Believing in rumors can cause significant harm. This is further exacerbated at the time of a pandemic. To tackle this, we curate and release a manually annotated dataset of 10,700 social media posts and articles of real and fake news on COVID-19. We benchmark the annotated dataset with four machine learning baselines - Decision Tree, Logistic Regression, Gradient Boost, and Support Vector Machine (SVM). We obtain the best performance of 93.46% F1-score with SVM. The data and code is available at: this https URL

178 citations

Journal ArticleDOI
TL;DR: A cascaded framework of feature selection and classifier ensemble using particle swarm optimization (PSO) for aspect based sentiment analysis using three classifiers, namely Maximum Entropy, Conditional Random Field and Support Vector Machine are presented.
Abstract: In this paper we present a cascaded framework of feature selection and classifier ensemble using particle swarm optimization (PSO) for aspect based sentiment analysis. Aspect based sentiment analysis is performed in two steps, viz. aspect term extraction and sentiment classification. The pruned, compact set of features performs better compared to the baseline model that makes use of the complete set of features for aspect term extraction and sentiment classification. We further construct an ensemble based on PSO, and put it in cascade after the feature selection module. We use the features that are identified based on the properties of different classifiers and domains. As base learning algorithms we use three classifiers, namely Maximum Entropy (ME), Conditional Random Field (CRF) and Support Vector Machine (SVM). Experiments for aspect term extraction and sentiment analysis on two different kinds of domains show the effectiveness of our proposed approach.

138 citations

Proceedings ArticleDOI
01 Jan 2018
TL;DR: A recurrent neural network based multi-modal attention framework that leverages the contextual information for utterance-level sentiment prediction that applies attention on multi- modal multi-utterance representations and tries to learn the contributing features amongst them.
Abstract: Multi-modal sentiment analysis offers various challenges, one being the effective combination of different input modalities, namely text, visual and acoustic. In this paper, we propose a recurrent neural network based multi-modal attention framework that leverages the contextual information for utterance-level sentiment prediction. The proposed approach applies attention on multi-modal multi-utterance representations and tries to learn the contributing features amongst them. We evaluate our proposed approach on two multi-modal sentiment analysis benchmark datasets, viz. CMU Multi-modal Opinion-level Sentiment Intensity (CMU-MOSI) corpus and the recently released CMU Multi-modal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) corpus. Evaluation results show the effectiveness of our proposed approach with the accuracies of 82.31% and 79.80% for the MOSI and MOSEI datasets, respectively. These are approximately 2 and 1 points performance improvement over the state-of-the-art models for the datasets.

119 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

01 Jun 2005

3,154 citations