scispace - formally typeset
Search or ask a question
Author

Astghik Voskanyan

Bio: Astghik Voskanyan is an academic researcher from Heidelberg University. The author has contributed to research in topics: Transplantation & Imatinib mesylate. The author has an hindex of 4, co-authored 8 publications receiving 73 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Current treatment options are combined in a concluding strategy for the management of BC, and the best prognosis is observed in patients that achieve a 2nd CP.

53 citations

Journal ArticleDOI
01 Jan 2020-Leukemia
TL;DR: High-risk ACA at low blast counts identify end-phase CML earlier than current diagnostic systems and mortality was lower with earlier treatment.
Abstract: Blast crisis is one of the remaining challenges in chronic myeloid leukemia (CML). Whether additional chromosomal abnormalities (ACAs) enable an earlier recognition of imminent blastic proliferation and a timelier change of treatment is unknown. One thousand five hundred and ten imatinib-treated patients with Philadelphia-chromosome-positive (Ph+) CML randomized in CML-study IV were analyzed for ACA/Ph+ and blast increase. By impact on survival, ACAs were grouped into high risk (+8, +Ph, i(17q), +17, +19, +21, 3q26.2, 11q23, -7/7q abnormalities; complex) and low risk (all other). The presence of high- and low-risk ACAs was linked to six cohorts with different blast levels (1%, 5%, 10%, 15%, 20%, and 30%) in a Cox model. One hundred and twenty-three patients displayed ACA/Ph+ (8.1%), 91 were high risk. At low blast levels (1-15%), high-risk ACA showed an increased hazard to die compared to no ACA (ratios: 3.65 in blood; 6.12 in marrow) in contrast to low-risk ACA. No effect was observed at blast levels of 20-30%. Sixty-three patients with high-risk ACA (69%) died (n = 37) or were alive after progression or progression-related transplantation (n = 26). High-risk ACA at low blast counts identify end-phase CML earlier than current diagnostic systems. Mortality was lower with earlier treatment. Cytogenetic monitoring is indicated when signs of progression surface or response to therapy is unsatisfactory.

39 citations

Journal ArticleDOI
21 Mar 2019-PLOS ONE
TL;DR: Both methods are considered as comparable and interchangeable in terms of achievement of MMR and of longitudinal evaluation of clinical courses, however, in LC/ABL1 negative samples, slightly enhanced TM/GUSB sensitivity may lead to inferior classification of clinical samples in the context of TFR.
Abstract: In chronic myeloid leukemia (CML), the duration of deep molecular response (MR) before treatment cessation (MR4 or deeper, corresponding to BCR-ABL1 ≤ 0.01% on the International Scale (IS)) is considered as a prognostic factor for treatment free remission in stopping trials. MR level determination is dependent on the sensitivity of the monitoring technique. Here, we compared a newly established TaqMan (TM) and our so far routinely used LightCycler (LC) quantitative reverse transcription (qRT)-PCR systems for their ability to achieve the best possible sensitivity in BCR-ABL1 monitoring. We have comparatively analyzed RNA samples from peripheral blood mononuclear cells of 92 randomly chosen patients with CML resembling major molecular remission (MMR) or better and of 128 CML patients after treatment cessation (EURO-SKI stopping trial). While our LC system utilized ABL1, the TM system is based on GUSB as reference gene. We observed 99% concordance with respect to achievement of MMR. However, we found that 34 of the 92 patients monitored by TM/GUSB were re-classified to the next inferior MR log level, especially when LC/ABL1-based results were borderline to thresholds. Thirteen patients BCR-ABL1 negative in LC/ABL1 became positive after TM/GUSB analysis. In the 128 patients included in the EURO-SKI trial identical molecular findings were achieved for 114 patients. However, 14 patients were re-classified to the next inferior log-level by the TM/GUSB combination. Eight of these patients relapsed after treatment cessation; two of them were re-classified from MR4 to MMR and therefore did not meet inclusion criteria anymore. In conclusion, we consider both methods as comparable and interchangeable in terms of achievement of MMR and of longitudinal evaluation of clinical courses. However, in LC/ABL1 negative samples, slightly enhanced TM/GUSB sensitivity may lead to inferior classification of clinical samples in the context of TFR.

12 citations

Journal ArticleDOI
07 Dec 2017-Blood

6 citations

Journal ArticleDOI
01 Oct 2020-Leukemia
TL;DR: An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Abstract: An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 2020-Leukemia
TL;DR: An expert panel to critically evaluate and update the evidence to achieve goals to achieve a stable deep molecular response (DMR) and discontinuing medication for treatment-free remission (TFR) in chronic myeloid leukemia.
Abstract: The therapeutic landscape of chronic myeloid leukemia (CML) has profoundly changed over the past 7 years. Most patients with chronic phase (CP) now have a normal life expectancy. Another goal is achieving a stable deep molecular response (DMR) and discontinuing medication for treatment-free remission (TFR). The European LeukemiaNet convened an expert panel to critically evaluate and update the evidence to achieve these goals since its previous recommendations. First-line treatment is a tyrosine kinase inhibitor (TKI; imatinib brand or generic, dasatinib, nilotinib, and bosutinib are available first-line). Generic imatinib is the cost-effective initial treatment in CP. Various contraindications and side-effects of all TKIs should be considered. Patient risk status at diagnosis should be assessed with the new EUTOS long-term survival (ELTS)-score. Monitoring of response should be done by quantitative polymerase chain reaction whenever possible. A change of treatment is recommended when intolerance cannot be ameliorated or when molecular milestones are not reached. Greater than 10% BCR-ABL1 at 3 months indicates treatment failure when confirmed. Allogeneic transplantation continues to be a therapeutic option particularly for advanced phase CML. TKI treatment should be withheld during pregnancy. Treatment discontinuation may be considered in patients with durable DMR with the goal of achieving TFR.

683 citations

Journal ArticleDOI
TL;DR: A large number of newly diagnosed cases of leukemia in adults are classified as CML, which is a myeloproliferative neoplasm with an incidence of 1‐2 cases per 100 000 adults.
Abstract: Disease overview Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm with an incidence of 1-2 cases per 100 000 adults. It accounts for approximately 15% of newly diagnosed cases of leukemia in adults. Diagnosis CML is characterized by a balanced genetic translocation, t(9;22)(q34;q11.2), involving a fusion of the Abelson gene (ABL1) from chromosome 9q34 with the breakpoint cluster region (BCR) gene on chromosome 22q11.2. This rearrangement is known as the Philadelphia chromosome. The molecular consequence of this translocation is the generation of a BCR-ABL1 fusion oncogene, which in turn translates into a BCR-ABL oncoprotein. Frontline therapy Four tyrosine kinase inhibitors (TKIs), imatinib, nilotinib, dasatinib, and bosutinib are approved by the United States Food and Drug Administration for first-line treatment of newly diagnosed CML in chronic phase (CML-CP). Clinical trials with second generation TKIs reported significantly deeper and faster responses, but they had no impact on survival prolongation, likely because of the existence of highly effective salvage therapies for patients who have a cytogenetic relapse with frontline TKI. Salvage therapy For CML post failure on frontline therapy, second-line options include second and third generation TKIs. Although potent and selective, these exhibit unique pharmacological profiles and response patterns relative to different patient and disease characteristics, such as patients' comorbidities, disease stage, and BCR-ABL1 mutational status. Patients who develop the T315I "gatekeeper" mutation display resistance to all currently available TKIs except ponatinib. Allogeneic stem cell transplantation remains an important therapeutic option for patients with CML-CP who have failed at least 2 TKIs, and for all patients in advanced phase disease. Even among older patients who have a cytogenetic relapse post failure on all TKIs, they can maintain long-term survival if they continue on a daily most effective/less toxic TKI, with or without the addition of non-TKI anti-CML agents (hydroxyurea, omacetaxine, azacitidine, decitabine, cytarabine, busulfan, others).

179 citations

Journal ArticleDOI
15 Nov 2017-Cancer
TL;DR: The authors sought to analyze the characteristics, prognostic factors, and survival outcomes in patients with CML‐BP in the tyrosine kinase inhibitor (TKI) era.
Abstract: BACKGROUND Outcomes in patients with chronic myeloid leukemia in blast phase (CML-BP) are historically dismal. Herein, the authors sought to analyze the characteristics, prognostic factors, and survival outcomes in patients with CML-BP in the tyrosine kinase inhibitor (TKI) era. METHODS A total of 477 patients with CML-BP were treated with a TKI at some point during the course of their CML. Cox proportional hazard models identified characteristics that were predictive of survival. Overall survival and failure-free survival were assessed. Optimal cutoff points for specific parameters were identified using classification and regression tree (CART) analysis. RESULTS The median age of the patients was 53 years (range, 16-84 years) and 64% were male. Approximately 80% of patients initially were diagnosed in the chronic phase of CML at a median of 41 months (range, 0.7-298 months) before transformation to CML-BP. De novo CML-BP occurred in 71 patients. Approximately 72% of patients received TKI therapy before CML-BP. The initial therapy for CML-BP included a TKI alone (35%), a TKI with chemotherapy (46%), and non-TKI therapies (19%). The median overall survival was 12 months and the median failure-free survival was 5 months. In multivariate analysis, myeloid immunophenotype, prior TKI, age ≥58 years, lactate dehydrogenase level ≥1227 IU/L, platelet count < 102 K/μL, no history of stem cell transplantation, transition to BP from chronic phase/accelerated phase, and the presence of chromosome 15 aberrations predicted for a significantly increased risk of death. Achievement of major hematologic response and/or complete cytogenetic response to first-line treatment was found to be predictive of better survival. The combination of a TKI with intensive chemotherapy followed by stem cell transplantation appeared to confer the best outcome. CONCLUSIONS Patients with CML-BP continue to pose a therapeutic challenge, have dismal outcomes, and require newer treatment approaches. Cancer 2017. © 2017 American Cancer Society.

104 citations

Journal Article
01 Jan 2003-Leukemia
TL;DR: In this paper, a TaqMan-based real-time quantitative PCR (RQ-PCR) analysis of the main leukemia-associated fusion gene (FG) transcripts within the Europe Against Cancer (EAC) program is presented.
Abstract: Detection of minimal residual disease (MRD) has proven to provide independent prognostic information for treatment stratification in several types of leukemias such as childhood acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and acute promyelocytc leukemia. This report focuses on the accurate quantitative measurement of fusion gene (FG) transcripts as can be applied in 35–45% of ALL and acute myeloid leukemia, and in more than 90% of CML. A total of 26 European university laboratories from 10 countries have collaborated to establish a standardized protocol for TaqMan-based real-time quantitative PCR (RQ-PCR) analysis of the main leukemia-associated FGs within the Europe Against Cancer (EAC) program. Four phases were scheduled: (1) training, (2) optimization, (3) sensitivity testing and (4) patient sample testing. During our program, three quality control rounds on a large series of coded RNA samples were performed including a balanced randomized assay, which enabled final validation of the EAC primer and probe sets. The expression level of the nine major FG transcripts in a large series of stored diagnostic leukemia samples (n=278) was evaluated. After normalization, no statistically significant difference in expression level was observed between bone marrow and peripheral blood on paired samples at diagnosis. However, RQ-PCR revealed marked differences in FG expression between transcripts in leukemic samples at diagnosis that could account for differential assay sensitivity. The development of standardized protocols for RQ-PCR analysis of FG transcripts provides a milestone for molecular determination of MRD levels. This is likely to prove invaluable to the management of patients entered into multicenter therapeutic trials.

91 citations

Journal ArticleDOI
TL;DR: The latest advances in treatment and monitoring of CML and Ph+ ALL and the issues that still need to be addressed to make the best use of the therapeutic armamentarium and molecular testing technologies currently at the authors' disposal are discussed.
Abstract: The Philadelphia (Ph) chromosome, resulting from the t(9;22)(q34;q11) translocation, can be found in chronic myeloid leukemia (CML) as well as in a subset of acute lymphoblastic leukemias (ALL). The deregulated BCR-ABL1 tyrosine kinase encoded by the fusion gene resulting from the translocation is considered the pathogenetic driver and can be therapeutically targeted. In both CML and Ph-positive (Ph+) ALL, tyrosine kinase inhibitors (TKIs) have significantly improved outcomes. In the TKI era, testing for BCR-ABL1 transcript levels by real-time quantitative polymerase chain reaction (RQ-PCR) has become the gold standard to monitor patient response, anticipate relapse, and guide therapeutic decisions. In CML, key molecular response milestones have been defined that draw the ideal trajectory towards optimal long-term outcomes. Treatment discontinuation (treatment-free remission, TFR) has proven feasible in a proportion of patients, and clinical efforts are now focused on how to increase this proportion and how to best select TFR candidates. In Ph+ ALL, results of trials with second- and third-generation TKIs are challenging the role of intensive chemotherapy and even that of allogeneic stem cell transplantation. Additional weapons are offered by the recently introduced monoclonal antibodies. In patients harboring mutations in the BCR-ABL1 kinase domain, prompt therapeutic reassessment and individualization based on mutation status are important to regain response and prevent disease progression. Next-generation sequencing is likely to become a precious tool for mutation testing because of the greater sensitivity and the possibility to discriminate between compound and polyclonal mutations. In this review, we discuss the latest advances in treatment and monitoring of CML and Ph+ ALL and the issues that still need to be addressed to make the best use of the therapeutic armamentarium and molecular testing technologies currently at our disposal.

71 citations