scispace - formally typeset
Search or ask a question
Author

Asya Rolls

Bio: Asya Rolls is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Immune system & Chondroitin sulfate proteoglycan. The author has an hindex of 20, co-authored 44 publications receiving 3183 citations. Previous affiliations of Asya Rolls include Stanford University & Weizmann Institute of Science.

Papers
More filters
Journal ArticleDOI
TL;DR: Using a mouse model of spinal injury, Michal Schwartz and colleagues tested the effect of macrophages on the recovery process and demonstrate an important anti-inflammatory role for a subset of infiltrating monocyte-derived macrophage that is dependent upon their expression of interleukin 10.
Abstract: Background: Although macrophages (MW) are known as essential players in wound healing, their contribution to recovery from spinal cord injury (SCI) is a subject of debate. The difficulties in distinguishing between different MW subpopulations at the lesion site have further contributed to the controversy and led to the common view of MW as functionally homogenous. Given the massive accumulation in the injured spinal cord of activated resident microglia, which are the native immune occupants of the central nervous system (CNS), the recruitment of additional infiltrating monocytes from the peripheral blood seems puzzling. A key question that remains is whether the infiltrating monocyte-derived MW contribute to repair, or represent an unavoidable detrimental response. The hypothesis of the current study is that a specific population of infiltrating monocyte-derived MW is functionally distinct from the inflammatory resident microglia and is essential for recovery from SCI. Methods and Findings: We inflicted SCI in adult mice, and tested the effect of infiltrating monocyte-derived MW on the recovery process. Adoptive transfer experiments and bone marrow chimeras were used to functionally distinguish between the resident microglia and the infiltrating monocyte-derived MW. We followed the infiltration of the monocyte-derived MW

694 citations

Journal ArticleDOI
TL;DR: Following CNS injury, in an apparently counterintuitive response, scar tissue formation inhibits axonal growth, imposing a major barrier to regeneration.
Abstract: Following CNS injury, in an apparently counterintuitive response, scar tissue formation inhibits axonal growth, imposing a major barrier to regeneration. Accordingly, scar-modulating treatments have become a leading therapeutic goal in the field of spinal cord injury. However, increasing evidence suggests a beneficial role for this scar tissue as part of the endogenous local immune regulation and repair process. How can these opposing effects be reconciled? Perhaps it is all a matter of timing.

586 citations

Journal ArticleDOI
TL;DR: This study identified Toll-like receptors as players in adult neurogenesis and emphasizes their specified and diverse role in cell renewal.
Abstract: Neurogenesis — the formation of new neurons in the adult brain — is considered to be one of the mechanisms by which the brain maintains its lifelong plasticity in response to extrinsic and intrinsic changes1. The mechanisms underlying the regulation of neurogenesis are largely unknown. Here, we show that Toll-like receptors (TLRs), a family of highly conserved pattern-recognizing receptors involved in neural system development in Drosophila2 and innate immune activity in mammals3,4, regulate adult hippocampal neurogenesis. We show that TLR2 and TLR4 are found on adult neural stem/progenitor cells (NPCs) and have distinct and opposing functions in NPC proliferation and differentiation both in vitro and in vivo. TLR2 deficiency in mice impaired hippocampal neurogenesis, whereas the absence of TLR4 resulted in enhanced proliferation and neuronal differentiation. In vitro studies further indicated that TLR2 and TLR4 directly modulated self-renewal and the cell-fate decision of NPCs. The activation of TLRs on the NPCs was mediated via MyD88 and induced PKCα/β-dependent activation of the NF-κB signalling pathway. Thus, our study identified TLRs as players in adult neurogenesis and emphasizes their specified and diverse role in cell renewal.

559 citations

Journal ArticleDOI
TL;DR: This study uses CyTOF mass cytometry to characterize the immune populations of the naive mouse brain using 44 cell surface markers and demonstrates the phenotypic ranges of resident myeloid cells and identifies CD44 as a marker for infiltrating immune populations.
Abstract: Korin et al. use CyTOF mass cytometry to characterize immune cell populations in the naive mouse brain (parenchyma, choroid plexus and meninges). This single-cell analysis of cell-surface proteins reveals the presence and phenotype of distinctive immune populations in the mouse brain compartment. The brain and its borders create a highly dynamic microenvironment populated with immune cells. Yet characterization of immune cells within the naive brain compartment remains limited. In this study, we used CyTOF mass cytometry to characterize the immune populations of the naive mouse brain using 44 cell surface markers. By comparing immune cell composition and cell profiles between the brain compartment and blood, we were able to characterize previously undescribed cell subsets of CD8 T cells, B cells, NK cells and dendritic cells in the naive brain. Using flow cytometry, we show differential distributions of immune populations between meninges, choroid plexus and parenchyma. We demonstrate the phenotypic ranges of resident myeloid cells and identify CD44 as a marker for infiltrating immune populations. This study provides an approach for a system-wide view of immune populations in the brain and is expected to serve as a resource for understanding brain immunity.

265 citations

Journal ArticleDOI
TL;DR: CSPG plays a pivotal role in the repair of injured spinal cord and in the recovery of motor function during the acute phase after the injury; CSPG spatially and temporally controls activity of infiltrating blood-borne monocytes and resident microglia.
Abstract: Background Chondroitin sulfate proteoglycan (CSPG) is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS) recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study. Methods and Findings We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1) production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-a) levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/ macrophages via the CD44 receptor and modulated neurotrophic factor secretion by these cells. Conclusions Our results show that CSPG plays a pivotal role in the repair of injured spinal cord and in the recovery of motor function during the acute phase after the injury; CSPG spatially and temporally controls activity of infiltrating blood-borne monocytes and resident microglia. The distinction made in this study between the beneficial role of CSPG during the acute stage and its deleterious effect at later stages emphasizes the need to retain the endogenous potential of this molecule in repair by controlling its levels at different stages of post-injury repair.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The four stages of orderly inflammation mediated by macrophages are discussed: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis.
Abstract: Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing Finally, we briefly discuss the characterization of macrophage heterogeneity in humans

4,182 citations

Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: This Review discusses how macrophage regulate normal physiology and development, and provides several examples of their pathophysiological roles in disease, and defines the ‘hallmarks’ of macrophages according to the states that they adopt during the performance of their various roles.
Abstract: Macrophages, the most plastic cells of the haematopoietic system, are found in all tissues and show great functional diversity. They have roles in development, homeostasis, tissue repair and immunity. Although tissue macrophages are anatomically distinct from one another, and have different transcriptional profiles and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this Review, we discuss how macrophages regulate normal physiology and development, and provide several examples of their pathophysiological roles in disease. We define the 'hallmarks' of macrophages according to the states that they adopt during the performance of their various roles, taking into account new insights into the diversity of their lineages, identities and regulation. It is essential to understand this diversity because macrophages have emerged as important therapeutic targets in many human diseases.

3,368 citations

Journal ArticleDOI
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.

2,998 citations

Journal ArticleDOI
22 Feb 2008-Cell
TL;DR: The factors that regulate proliferation and fate determination of adult neural stem cells are discussed and the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease is addressed.

2,911 citations

Journal ArticleDOI
05 Feb 2010-Science
TL;DR: The current understanding of myeloid lineage development is reviewed and the developmental pathways and cues that drive differentiation are described, which are central to the development of immunologic memory and tolerance in mice.
Abstract: Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.

2,832 citations