scispace - formally typeset
Search or ask a question
Author

Athanasia D. Skentou

Bio: Athanasia D. Skentou is an academic researcher from School of Pedagogical and Technological Education. The author has contributed to research in topics: Compressive strength & Masonry. The author has an hindex of 6, co-authored 12 publications receiving 309 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The newly constructed HENSM model is very potential to be a new alternative in handling the overfitting issues of CML models and hence, can be used to predict the concrete CS, including the design of less polluting and more sustainable concrete constructions.

166 citations

Journal ArticleDOI
TL;DR: The preliminary results presented in this work reveal the crucial parameters that affect the value of the shear strength of reinforced concrete beams with or without transverse reinforcement.
Abstract: Despite the abundance of research works, both experimental and theoretical, conducted since the middle of the previous century up to today, the determination of the shear stress value is still remains an open issue of great interest in structural engineering. The need for further research is indicated by the fact that the majority of available proposals, whether proposed by regulatory agencies or various individuals researchers, lead to the estimation of different shear stress values; moreover, the comparison of estimated values with experimental values demonstrates that the available proposals lead to an overestimation or to an underestimation of the “true” shear stress. In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, artificial neural network models have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the consequent results with the corresponding experimental ones as well as with available formulas from previous research studies or code provisions makes obvious the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner. Furthermore, the preliminary results presented in this work reveal the crucial parameters that affect the value of the shear strength of reinforced concrete beams with or without transverse reinforcement.

105 citations

Journal ArticleDOI
TL;DR: In this paper, a methodology aiming to predict the vulnerability of masonry structures under seismic action is presented, taking into account the probabilistic nature of the input parameters by means of analytically determining fragility curves.
Abstract: A methodology aiming to predict the vulnerability of masonry structures under seismic action is presented herein. Masonry structures, among which many are cultural heritage assets, present high vulnerability under earthquake. Reliable simulations of their response to seismic stresses are exceedingly difficult because of the complexity of the structural system and the anisotropic and brittle behavior of the masonry materials. Furthermore, the majority of the parameters involved in the problem such as the masonry material mechanical characteristics and earthquake loading characteristics have a stochastic-probabilistic nature. Within this framework, a detailed analytical methodological approach for assessing the seismic vulnerability of masonry historical and monumental structures is presented, taking into account the probabilistic nature of the input parameters by means of analytically determining fragility curves. The emerged methodology is presented in detail through application on theoretical and built cultural heritage real masonry structures.

84 citations

Journal ArticleDOI
TL;DR: The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.
Abstract: Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict mortar strength based on its mix components. This limitation is due to the highly nonlinear relation between the mortar\'s compressive strength and the mixed components. In this paper, the application of artificial neural networks for predicting the compressive strength of mortars has been investigated. Specifically, surrogate models (such as artificial neural network models) have been used for the prediction of the compressive strength of mortars (based on experimental data available in the literature). Furthermore, compressive strength maps are presented for the first time, aiming to facilitate mortar mix design. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.

77 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D-epidemic surface is proposed to assess the epidemic phenomenon at any time of its evolution, which can assist in the risk assessment of the COVID-19 pandemic.
Abstract: Themodeling and risk assessment of a pandemic phenomenon such as COVID-19 is an important and complicated issue in epidemiology, and such an attempt is of great interest for public health decision-making To this end, in the present study, based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19 is investigated for six different countries/states, namely New York, California, USA, Iran, Sweden and UK The number of COVID-19-related deaths is used to develop the proposed heuristic model as it is believed that the predicted number of daily deaths in each country/state includes information about the quality of the health system in each area, the age distribution of population, geographical and environmental factors as well as other conditions Based on derived predicted epidemic curves, a new 3D-epidemic surface is proposed to assess the epidemic phenomenon at any time of its evolution This research highlights the potential of the proposed model as a tool which can assist in the risk assessment of the COVID-19 Mapping its development through 3D-epidemic surface can assist in revealing its dynamic nature as well as differences and similarities among different districts

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The comparison of the ANN-derived results with the experimental findings, which are in very good agreement, demonstrates the ability of ANNs to estimate the compressive strength of concrete in a reliable and robust manner.
Abstract: The non-destructive testing of concrete structures with methods such as ultrasonic pulse velocity and Schmidt rebound hammer test is of utmost technical importance. Non-destructive testing methods do not require sampling, and they are simple, fast to perform, and efficient. However, these methods result in large dispersion of the values they estimate, with significant deviation from the actual (experimental) values of compressive strength. In this paper, the application of artificial neural networks (ANNs) for predicting the compressive strength of concrete in existing structures has been investigated. ANNs have been systematically used for predicting the compressive strength of concrete, utilizing both the ultrasonic pulse velocity and the Schmidt rebound hammer experimental results, which are available in the literature. The comparison of the ANN-derived results with the experimental findings, which are in very good agreement, demonstrates the ability of ANNs to estimate the compressive strength of concrete in a reliable and robust manner. Thus, the (quantitative) values of weights for the proposed neural network model are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.

197 citations

Journal ArticleDOI
TL;DR: The developed ANN model has been introduced as the best predictive technique for solving problem of the compressive strength of mortars and an ambitious attempt to reveal the nature of mortar materials has been made.
Abstract: Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the literature, which can estimate its strength based on its mix parameters. This limitation is due to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques toward the prediction of the compressive strength of cement-based mortar materials with or without metakaolin has been investigated. Specifically, surrogate models (such as artificial neural network, ANN and adaptive neuro-fuzzy inference system, ANFIS models) have been developed to the prediction of the compressive strength of mortars trained using experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of both ANN and ANFIS models to approximate the compressive strength of mortars in a reliable and robust manner. Although ANFIS was able to obtain higher performance prediction to estimate the compressive strength of mortars compared to ANN model, it was found through the verification process of some other additional data, the ANFIS model has overfitted the data. Therefore, the developed ANN model has been introduced as the best predictive technique for solving problem of the compressive strength of mortars. Furthermore, using the optimum developed model an ambitious attempt to reveal the nature of mortar materials has been made.

187 citations

Journal ArticleDOI
TL;DR: The results presented herein showed an effective manner in selecting the appropriate ratios of datasets and the best ML model to predict the soil shear strength accurately, which would be helpful in the design and engineering phases of construction projects.
Abstract: The main objective of this study is to evaluate and compare the performance of different machine learning (ML) algorithms, namely, Artificial Neural Network (ANN), Extreme Learning Machine (ELM), and Boosting Trees (Boosted) algorithms, considering the influence of various training to testing ratios in predicting the soil shear strength, one of the most critical geotechnical engineering properties in civil engineering design and construction. For this aim, a database of 538 soil samples collected from the Long Phu 1 power plant project, Vietnam, was utilized to generate the datasets for the modeling process. Different ratios (i.e., 10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70/30, 80/20, and 90/10) were used to divide the datasets into the training and testing datasets for the performance assessment of models. Popular statistical indicators, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (R), were employed to evaluate the predictive capability of the models under different training and testing ratios. Besides, Monte Carlo simulation was simultaneously carried out to evaluate the performance of the proposed models, taking into account the random sampling effect. The results showed that although all three ML models performed well, the ANN was the most accurate and statistically stable model after 1000 Monte Carlo simulations (Mean R = 0.9348) compared with other models such as Boosted (Mean R = 0.9192) and ELM (Mean R = 0.8703). Investigation on the performance of the models showed that the predictive capability of the ML models was greatly affected by the training/testing ratios, where the 70/30 one presented the best performance of the models. Concisely, the results presented herein showed an effective manner in selecting the appropriate ratios of datasets and the best ML model to predict the soil shear strength accurately, which would be helpful in the design and engineering phases of construction projects.

171 citations

Journal ArticleDOI
TL;DR: The newly constructed HENSM model is very potential to be a new alternative in handling the overfitting issues of CML models and hence, can be used to predict the concrete CS, including the design of less polluting and more sustainable concrete constructions.

166 citations

Journal ArticleDOI
TL;DR: Findings demonstrated that the proposed ICA-XGBoost model performed better than the other models in estimating compressive strength of recycled aggregate concrete, and can be used in construction engineering in order to ensure adequate mechanical performance of the recycled aggregatecrete and allow its safe use for building purposes.
Abstract: Recycled aggregate concrete is used as an alternative material in construction engineering, aiming to environmental protection and sustainable development. However, the compressive strength of this concrete material is considered as a crucial parameter and an important concern for construction engineers regarding its application. In the present work, the 28-days compressive strength of recycled aggregate concrete is investigated through four artificial intelligence techniques based on a meta-heuristic search of sociopolitical algorithm (i.e. ICA) and XGBoost, called the ICA-XGBoost model. Based on performance indices, the optimum among these developed models proved to be ICA-XGBoost model. Namely, findings demonstrated that the proposed ICA-XGBoost model performed better than the other models (i.e. ICA-ANN, ICA-SVR, and ICA-ANFIS models) in estimating compressive strength of recycled aggregate concrete. The suggested model can be used in construction engineering in order to ensure adequate mechanical performance of the recycled aggregate concrete and allow its safe use for building purposes.

155 citations