scispace - formally typeset
Search or ask a question
Author

Athena Chalaris

Bio: Athena Chalaris is an academic researcher from University of Kiel. The author has contributed to research in topics: Ectodomain & Glycoprotein 130. The author has an hindex of 34, co-authored 55 publications receiving 5977 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It turns out that regenerative or anti-inflammatory activities of interleukin-6 are mediated by classic signaling whereas pro-inflammatory responses of interLEukin -6 are rather mediated by trans-signaling.

2,597 citations

Journal ArticleDOI
TL;DR: Tissue-specific deletion, or hypomorphic knock-in, of Adam17 demonstrates an in vivo role for ADAM17 in controlling inflammation and tissue regeneration and the potential ofADAM17 as therapeutic target is discussed.

446 citations

Journal ArticleDOI
TL;DR: Ex vivo experiments show that GPR43-induced migration is dependent on activation of the protein kinase p38α, and that this signal acts in cooperation with the chemotactic cytokine keratinocyte chemoattractant, and Interestingly, shedding of L-selectin in response to propionate and butyrate was compromised in Gpr43−/− mice.
Abstract: Molecular danger signals attract neutrophilic granulocytes (polymorphonuclear leukocytes (PMNs)) to sites of infection. The G protein-coupled receptor (GPR) 43 recognizes propionate and butyrate and is abundantly expressed on PMNs. The functional role of GPR43 activation for in vivo orchestration of immune response is unclear. We examined dextrane sodium sulfate (DSS)-induced acute and chronic intestinal inflammatory response in wild-type and Gpr43-deficient mice. The severity of colonic inflammation was assessed by clinical signs, histological scoring, and cytokine production. Chemotaxis of wild-type and Gpr43-deficient PMNs was assessed through transwell cell chemotactic assay. A reduced invasion of PMNs and increased mortality due to septic complications were observed in acute DSS colitis. In chronic DSS colitis, Gpr43(-/-) animals showed diminished PMN intestinal migration, but protection against inflammatory tissue destruction. No significant difference in PMN migration and cytokine secretion was detected in a sterile inflammatory model. Ex vivo experiments show that GPR43-induced migration is dependent on activation of the protein kinase p38 alpha, and that this signal acts in cooperation with the chemotactic cytokine keratinocyte chemoattractant. Interestingly, shedding of L-selectin in response to propionate and butyrate was compromised in Gpr43(-/-) mice. These results indicate a critical role for GPR43-mediated recruitment of PMNs in containing intestinal bacterial translocation, yet also emphasize the bipotential role of PMNs in mediating tissue destruction in chronic intestinal inflammation. The Journal of Immunology, 2009, 183: 7514-7522.

323 citations

Journal ArticleDOI
15 Sep 2007-Blood
TL;DR: It is demonstrated that IL6R is shed from apoptotic human neutrophils, which is relevant to the control of acute inflammation, where transition from the initial neutrophil infiltration to a more sustained population of mononuclear cells is essential for the resolution of the inflammatory process.

320 citations

Journal ArticleDOI
TL;DR: It is demonstrated that ADAM17 is needed for vital regenerative activities during the immune response by regulating the systemic availability of the proinflammatory cytokine TNF and in defective regeneration of epithelial cells and breakdown of the intestinal barrier.
Abstract: The protease a disintegrin and metalloprotease (ADAM) 17 cleaves tumor necrosis factor (TNF), L-selectin, and epidermal growth factor receptor (EGF-R) ligands from the plasma membrane. ADAM17 is expressed in most tissues and is up-regulated during inflammation and cancer. ADAM17-deficient mice are not viable. Conditional ADAM17 knockout models demonstrated proinflammatory activities of ADAM17 in septic shock via shedding of TNF. We used a novel gene targeting strategy to generate mice with dramatically reduced ADAM17 levels in all tissues. The resulting mice called ADAM17ex/ex were viable, showed compromised shedding of ADAM17 substrates from the cell surface, and developed eye, heart, and skin defects as a consequence of impaired EGF-R signaling caused by failure of shedding of EGF-R ligands. Unexpectedly, although the intestine of unchallenged homozygous ADAM17ex/ex mice was normal, ADAM17ex/ex mice showed substantially increased susceptibility to inflammation in dextran sulfate sodium colitis. This was a result of impaired shedding of EGF-R ligands resulting in failure to phosphorylate STAT3 via the EGF-R and, consequently, in defective regeneration of epithelial cells and breakdown of the intestinal barrier. Besides regulating the systemic availability of the proinflammatory cytokine TNF, our results demonstrate that ADAM17 is needed for vital regenerative activities during the immune response. Thus, our mouse model will help investigate ADAM17 as a potential drug target.

258 citations


Cited by
More filters
Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, the world will be in a better position to develop treatments for metabolic disease.
Abstract: The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.

3,436 citations

Journal ArticleDOI
TL;DR: The extracellular matrix is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands, and its regulation contributes to several pathological conditions, such as fibrosis and invasive cancer.
Abstract: The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics.

2,854 citations

Journal ArticleDOI
TL;DR: It turns out that regenerative or anti-inflammatory activities of interleukin-6 are mediated by classic signaling whereas pro-inflammatory responses of interLEukin -6 are rather mediated by trans-signaling.

2,597 citations

Journal Article
TL;DR: Coppe et al. as mentioned in this paper showed that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy, including interleukin (IL)-6 and IL-8.
Abstract: PLoS BIOLOGY Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor Jean-Philippe Coppe 1 , Christopher K. Patil 1[ , Francis Rodier 1,2[ , Yu Sun 3 , Denise P. Mun oz 1,2 , Joshua Goldstein 1¤ , Peter S. Nelson 3 , Pierre-Yves Desprez 1,4 , Judith Campisi 1,2* 1 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Buck Institute for Age Research, Novato, California, United States of America, 3 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 4 California Pacific Medical Center Research Institute, San Francisco, California, United States of America Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA- damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. Citation: Coppe JP, Patil CK, Rodier F, Sun Y, Mun oz DP, et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): e301. doi:10.1371/journal.pbio.0060301 Introduction Cancer is a multistep disease in which cells acquire increasingly malignant phenotypes. These phenotypes are acquired in part by somatic mutations, which derange normal controls over cell proliferation (growth), survival, invasion, and other processes important for malignant tumorigenesis [1]. In addition, there is increasing evidence that the tissue microenvironment is an important determinant of whether and how malignancies develop [2,3]. Normal tissue environ- ments tend to suppress malignant phenotypes, whereas abnormal tissue environments such at those caused by inflammation can promote cancer progression. Cancer development is restrained by a variety of tumor suppressor genes. Some of these genes permanently arrest the growth of cells at risk for neoplastic transformation, a process termed cellular senescence [4–6]. Two tumor suppressor pathways, controlled by the p53 and p16INK4a/pRB proteins, regulate senescence responses. Both pathways integrate multiple aspects of cellular physiology and direct cell fate towards survival, death, proliferation, or growth arrest, depending on the context [7,8]. Several lines of evidence indicate that cellular senescence is a potent tumor-suppressive mechanism [4,9,10]. Many poten- tially oncogenic stimuli (e.g., dysfunctional telomeres, DNA PLoS Biology | www.plosbiology.org damage, and certain oncogenes) induce senescence [6,11]. Moreover, mutations that dampen the p53 or p16INK4a/pRB pathways confer resistance to senescence and greatly increase cancer risk [12,13]. Most cancers harbor mutations in one or both of these pathways [14,15]. Lastly, in mice and humans, a senescence response to strong mitogenic signals, such as those delivered by certain oncogenes, prevents premalignant lesions from progressing to malignant cancers [16–19]. Academic Editor: Julian Downward, Cancer Research UK, United Kingdom Received June 27, 2008; Accepted October 22, 2008; Published December 2, 2008 Copyright: O 2008 Coppe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: CM, conditioned medium; DDR, DNA damage response; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial–mesenchymal transition; GSE, genetic suppressor element; IL, interleukin; MIT, mitoxantrone; PRE, presenescent; PrEC, normal human prostate epithelial cell; REP, replicative exhaustion; SASP, senescence-associated secretory phenotype; SEN, senescent; shRNA, short hairpin RNA; XRA, X-irradiation * To whom correspondence should be addressed. E-mail: jcampisi@lbl.gov [ These authors contributed equally to this work. ¤ Current address: Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America December 2008 | Volume 6 | Issue 12 | e301

2,150 citations

Journal ArticleDOI
10 Jul 2014-Blood
TL;DR: A novel system to grade the severity of CRS in individual patients and a treatment algorithm for management of C RS based on severity is presented, to maximize the chance for therapeutic benefit from the immunotherapy while minimizing the risk for life threatening complications of the syndrome.

2,025 citations