scispace - formally typeset
Search or ask a question
Author

Athinodoros S. Georghiades

Bio: Athinodoros S. Georghiades is an academic researcher from Yale University. The author has contributed to research in topics: Lambertian reflectance & Facial recognition system. The author has an hindex of 12, co-authored 18 publications receiving 5877 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A generative appearance-based method for recognizing human faces under variation in lighting and viewpoint that exploits the fact that the set of images of an object in fixed pose but under all possible illumination conditions, is a convex cone in the space of images.
Abstract: We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render (or synthesize) images of the face under novel poses and illumination conditions. The pose space is then sampled and, for each pose, the corresponding illumination cone is approximated by a low-dimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated illumination cone. Test results show that the method performs almost without error, except on the most extreme lighting directions.

5,027 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: Appearances-based methods which, unlike previous appearance-based approaches, require only a small set of training images to generate a rich representation that models this variability, are presented.
Abstract: Image variability due to changes in pose and illumination can seriously impair object recognition. This paper presents appearance-based methods which, unlike previous appearance-based approaches, require only a small set of training images to generate a rich representation that models this variability. Specifically, from as few as three images of an object in fixed pose seen under slightly varying but unknown lighting, a surface and an albedo map are reconstructed. These are then used to generate synthetic images with large variations in pose and illumination and thus build a representation useful for object recognition. Our methods have been tested within the domain of face recognition on a subset of the Yale Face Database B containing 4050 images of 10 faces seen under variable pose and illumination. This database was specifically gathered for testing these generative methods. Their performance is shown to exceed that of popular existing methods.

301 citations

Proceedings ArticleDOI
23 Jun 1998
TL;DR: This method is both an implementation and extension (an extension in that it models cast shadows) of the illumination cone representation proposed in Belhumeur and Kriegman (1996), and the results exceed those of popular existing methods.
Abstract: Due to illumination variability, the same object can appear dramatically different even when viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or models this variability. This paper presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods, however, in that a small set of training images is used to generate a representation-the illumination cone-which models the complete set of images of an object with Lambertian reflectance map under an arbitrary combination of point light sources at infinity. This method is both an implementation and extension (an extension in that it models cast shadows) of the illumination cone representation proposed in Belhumeur and Kriegman (1996). The method is tested on a database of 660 images of 10 faces, and the results exceed those of popular existing methods.

246 citations

Proceedings Article
13 Oct 2003
TL;DR: This paper considers the use of a more general reflectance model, namely the Torrance and Sparrow model, in uncalibrated photometric stereo and demonstrates that this can not only resolve the ambiguity when the light sources are unknown, but can also result in more accurate surface reconstructions and can capture the reflectance properties of a large number of nonLambertian surfaces.
Abstract: Under the Lambertian reflectance model, uncalibrated photometricstereo with unknown light sources is inherentlyambiguous. In this paper, we consider the use of a moregeneral reflectance model, namely the Torrance and Sparrowmodel, in uncalibrated photometric stereo. We demonstratethat this can not only resolve the ambiguity when thelight sources are unknown, but can also result in more accuratesurface reconstructions and can capture the reflectanceproperties of a large number of non-Lambertian surfaces.Our method uses single light source images with unknownlighting and no knowledge about the parameters of the reflectancemodel. It can recover the 3-D shape of surfaces(up to the binary convex/concave ambiguity) together withtheir reflectance properties. We have successfully tested ouralgorithm on a variety of non-Lambertian surfaces demonstratingthe effectiveness of our approach. In the case ofhuman faces, the estimated skin reflectance has been shownto closely resemble the measured skin reflectance reportedin the literature. We also demonstrate improved recognitionresults on 4050 images of 10 faces with variable lightingand viewpoint when the synthetic image-based representationsof the faces are generated using the surface reconstructionsand reflectance properties recovered while assumingthe extended reflectance model.

189 citations

Journal ArticleDOI
TL;DR: A user interface is demonstrated that provides a method for specifying where an object is exposed to external agents and the results of complex, geometry-dependent textures evolving on synthetic objects are shown.
Abstract: Interesting textures form on the surfaces of objects as the result of external chemical, mechanical, and biological agents. Simulating these textures is necessary to generate models for realistic image synthesis. The textures formed are progressively variant, with the variations depending on the global and local geometric context. We present a method for capturing progressively varying textures and the relevant context parameters that control them. By relating textures and context parameters, we are able to transfer the textures to novel synthetic objects. We present examples of capturing chemical effects, such as rusting; mechanical effects, such as paint cracking; and biological effects, such as the growth of mold on a surface. We demonstrate a user interface that provides a method for specifying where an object is exposed to external agents. We show the results of complex, geometry-dependent textures evolving on synthetic objects.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: In this paper, the authors prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm.
Abstract: This article is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individuallyq We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.

6,783 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations

01 Oct 2008
TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Abstract: Most face databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, background, camera quality, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database, Labeled Faces in the Wild, is provided as an aid in studying the latter, unconstrained, recognition problem. The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life. The database exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background. In addition to describing the details of the database, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible. We provide baseline results, including results of a state of the art face recognition system combined with a face alignment system. To facilitate experimentation on the database, we provide several parallel databases, including an aligned version.

5,742 citations

Journal ArticleDOI
TL;DR: A generative appearance-based method for recognizing human faces under variation in lighting and viewpoint that exploits the fact that the set of images of an object in fixed pose but under all possible illumination conditions, is a convex cone in the space of images.
Abstract: We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render (or synthesize) images of the face under novel poses and illumination conditions. The pose space is then sampled and, for each pose, the corresponding illumination cone is approximated by a low-dimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated illumination cone. Test results show that the method performs almost without error, except on the most extreme lighting directions.

5,027 citations