scispace - formally typeset
Search or ask a question
Author

Atsuro Miyata

Bio: Atsuro Miyata is an academic researcher from Kagoshima University. The author has contributed to research in topics: Receptor & Cyclase. The author has an hindex of 30, co-authored 109 publications receiving 6633 citations. Previous affiliations of Atsuro Miyata include Tulane University & University of Miyazaki.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel neuropeptide which stimulates adenylate cyclase in rat anterior pituitary cell cultures was isolated from ovine hypothalamic tissues and increased release of growth hormone, prolactin, corticotropin and luteinizing hormone from superfused rat pituitaries at as small a dose as 10(-10)M) or 10(-9)M (LH).

1,815 citations

Journal ArticleDOI
TL;DR: Synthetic PACAP27 which shows a considerable homology with vasoactive intestinal polypeptide (VIP) demonstrated a similar vasodepressor activity as VIP, but the adenylate cyclase stimulating activity was about 1000 times greater than VIP.

905 citations

Journal ArticleDOI
TL;DR: The highest concentration of radioimmunoassayable PACAP38 was found in the hypothalamus, but other brain regions also contained considerable amounts ofPACAP38, and the total amount of PACAP in both testes exceeded its content in the whole brain.
Abstract: A heterologous RIA method for pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38) and a homologous RIA method for a shorter form of PACAP with 27 residues (PACAP27) were established to determine PACAP content in central and peripheral tissues in rats. The highest concentration of radioimmunoassayable PACAP38 was found in the hypothalamus, but other brain regions also contained considerable amounts of PACAP38. PACAP38 concentration in the posterior pituitary was comparable with that in the extrahypothalamic brain, but its concentration in the anterior pituitary was very low. Unexpectedly, the testis contained a high abundance of PACAP38, and the total amount of PACAP in both testes exceeded its content in the whole brain. Reverse phase HPLC suggested that the major testicular PACAP38 immunoreactivity represents PACAP38. Among peripheral tissues, adrenal gland contained the second highest concentration of PACAP. Smaller amounts of PACAP were widely distributed in the digestive trac...

614 citations

Journal ArticleDOI
TL;DR: A fluorescence in situ hybridization study showed that the human genes coding for prostaglandin-endoperoxide synthase 1 (PTGS1) and prostaglandsin- endoperoxide-synthase 2 (PT GS2) were mapped to distinct chromosomes 9q32-q33.3 and 1q25.3, respectively, indicating that these genes are not genetically linked.
Abstract: The human gene (PTGS2) encoding an inducible isozyme of prostaglandin-endoperoxide synthase (prostaglandin-endoperoxide synthase 2) that is distinct from the well-characterized and constitutive isozyme (prostaglandin-endoperoxide synthase 1), was isolated using a polymerase-chain reaction-generated cDNA fragment probe for human prostaglandin-endoperoxide synthase 2. Nucleotide sequence analysis of the entire human prostaglandin-endoperoxide-synthase-2 gene demonstrated that it is more than 8.3 kb in size and consists of ten exons; this gene is very similar to the murine and chicken prostaglandin-endoperoxide-synthase-2 genes. The structures of exons in the human prostaglandin-endoperoxide-synthase-2 gene were also similar to those of the human prostaglandin-endoperoxide-synthase-1 gene (PTGS1). However, the sizes of introns in the human prostaglandin-endoperoxide-synthase-2 gene were generally smaller than those of the human prostaglandin-endoperoxide-synthase-1 gene. Primer-extension analysis indicated that the transcriptional-start site is 134 bases upstream of the translational-initiation site. The sequence of the 1.69-kb region of nucleotides preceding the transcriptional-start site and the first 0.8-kb intron contained a canonical TATA box and various transcriptional-regulatory elements (CArG box, NF-IL6, PEA-1, myb, GATA-1, xenobiotic-response element, cAMP-response element, NF-kappa B, PEA-3, Sp-1 and 12-O-tetradecanoyl-phorbol-13-acetate-response element). The nucleotide sequence of the 5'-flanking region (275 bp) of the human prostaglandin-endoperoxide-synthase-2 gene showed 63% similarity to the sequence of murine prostaglandin-endoperoxide-synthase-2/TIS10 gene, but essentially no homology to the chicken prostaglandin-endoperoxide-synthase-2 gene, and human and murine prostaglandin-endoperoxide-synthase-1 genes. A fluorescence in situ hybridization study showed that the human genes coding for prostaglandin-endoperoxide synthase 1 (PTGS1) and prostaglandin-endoperoxidase synthase 2 (PTGS2) were mapped to distinct chromosomes 9q32-q33.3 and 1q25.2-q25.3, respectively, indicating that these genes are not genetically linked.

394 citations

Journal ArticleDOI
TL;DR: Results suggest that 1) a saturable, high affinity binding site for PACAP is present on anterior pituitary membranes; 2) PACAP27 and PACAP38, but not VIP, share this binding site in the anterior pituitsary and possibly the hypothalamus; and 3)PACAP27, PACAP 38, and VIP share a similar or identical binding site on lung membranes and possibly other peripheral tissues.
Abstract: A novel bioactive peptide was recently isolated from ovine hypothalamus and was named PACAP (pituitary adenylate cyclase-activating polypeptide). PACAP was present in two bioactive, amidated forms, PACAP27 and PACAP38 (27 and 38 amino acids, respectively), and showed a 68% sequence homology with vasoactive intestinal peptide (VIP) in the Nterminal 28 residues. PACAP38 was at least 1000 times more potent than VIP in stimulating adenylate cyclase in pituitary cells, but both peptides exhibited comparable vasodepressor activity. Thus, we sought to determine whether PACAP acts on specific binding sites in the anterior pituitary or other tissues and whether these binding sites are different from those of VIP. Binding of [125I] PACAP27 to freshly prepared rat anterior pituitary membranes in the presence and absence of 212 nM unlabeled PACAP27 was specific, saturable, and more rapid at 22 C than at 4 C. Scatchard analysis of this binding site using increasing doses of unlabeled PACAP27 revealed a single high aff...

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The purpose of this review is to provide a comprehensive survey of the current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Abstract: Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.

2,193 citations

Journal ArticleDOI
03 Mar 1988-Nature
TL;DR: The brain natriuretic peptide (BNP) as mentioned in this paper was identified in porcine brain of a novel peptide of 26 amino acid residues, eliciting a pharmacological spectrum very similar to that of ANP.
Abstract: Atrial natriuretic peptide (ANP), a hormone secreted from mammalian atria, regulates the homoeostatic balance of body fluid and blood pressure. ANP-like immunoreactivity is also present in the brain, suggesting that the peptide functions as a neuropeptide. We report here identification in porcine brain of a novel peptide of 26 amino-acid residues, eliciting a pharmacological spectrum very similar to that of ANP, such as natriuretic-diuretic, hypotensive and chick rectum relaxant activities. The complete amino-acid sequence determined for the peptide is remarkably similar to but definitely distinct from the known sequence of ANP, indicating that the genes for the two are distinct. Thus, we have designated the peptide 'brain natriuretic peptide' (BNP). The occurrence of BNP with ANP in mammalian brain suggests the possibility that the physiological functions so far thought to be mediated by ANP may be regulated through a dual mechanism involving both ANP and BNP.

1,794 citations

Journal ArticleDOI
TL;DR: The likelihood that this ancient gene superfamily has existed for more than 3.5 billion years, and that the rate of P450 gene evolution appears to be quite nonlinear, is discussed.
Abstract: We provide here a list of 221 P450 genes and 12 putative pseudogenes that have been characterized as of December 14, 1992. These genes have been described in 31 eukaryotes (including 11 mammalian and 3 plant species) and 11 prokaryotes. Of 36 gene families so far described, 12 families exist in all mammals examined to date. These 12 families comprise 22 mammalian subfamilies, of which 17 and 15 have been mapped in the human and mouse genome, respectively. To date, each subfamily appears to represent a cluster of tightly linked genes. This revision supersedes the previous updates [Nebert et al., DNA 6, 1–11, 1987; Nebert et al., DNA 8, 1–13, 1989; Nebert et al., DNA Cell Biol. 10, 1–14 (1991)] in which a nomenclature system, based on divergent evolution of the superfamily, has been described. For the gene and cDNA, we recommend that the italicized root symbol "CYP" for human ("Cyp" for mouse), representing "cytochrome P450," be followed by an Arabic number denoting the family, a letter designating...

1,660 citations

Journal ArticleDOI
TL;DR: Examination of the sources and mechanisms of the secretion of BNP in comparison with those of ANP in control subjects and in patients with heart failure concludes that BNP is secreted mainly from the left ventricle in normal adult humans as well as in Patients with left ventricular dysfunction.
Abstract: BACKGROUNDB-type or brain natriuretic peptide (BNP) is a novel natriuretic peptide secreted from the heart that forms a peptide family with A-type or atrial natriuretic peptide (ANP), and its plasma level has been shown to be increased in patients with congestive heart failure. This study was designed to examine the sources and mechanisms of the secretion of BNP in comparison with those of ANP in control subjects and in patients with heart failure.METHODS AND RESULTSWe measured the plasma levels of BNP as well as ANP in 16 patients with dilated cardiomyopathy (11 men and 5 women; mean age, 59 years) and 18 control subjects (9 men and 9 women; mean age, 54 years) by sampling blood from the femoral vein, the aortic root, the anterior interventricular vein (AIV), and the coronary sinus using the newly developed immunoradiometric assay systems. In the control subjects, there was no significant difference in the plasma ANP level between the aortic root and the AIV (24.0 +/- 5.2 pg/mL versus 32.2 +/- 17.0 pg/mL...

1,348 citations