scispace - formally typeset
Search or ask a question
Author

Atsushi Mochizuki

Bio: Atsushi Mochizuki is an academic researcher from Kyoto University. The author has contributed to research in topics: Chrysopidae & Neuroptera. The author has an hindex of 29, co-authored 98 publications receiving 3284 citations. Previous affiliations of Atsushi Mochizuki include National Presto Industries & National Institute for Basic Biology, Japan.


Papers
More filters
Journal ArticleDOI
TL;DR: In transgenic tobacco plants, a representative powerful promoter, as compared to the 35S promoter, allowed 10- and 50-fold higher levels of expression on average and at most, respectively, with no clear qualitative differences in tissue- and organ-specific patterns of expression.
Abstract: A series of chimeric promoters for higher-level expression of foreign genes in plants was constructed as fusions of a gene for beta-glucuronidase (GUS) with the terminator of a gene for nopaline synthase (nos) or of the cauliflower mosaic virus (CaMV) 35S transcript, and the strength of these promoters was assayed in transient and stable expression systems in tobacco and rice. As parts of these promoters, the CaMV 35S core promoter, three different 5'-upstream sequences of the 35S promoter, the first intron of a gene for phaseolin, and a 5'-untranslated sequence (omega sequence) of tobacco mosaic virus were used in various combinations. In tobacco and rice protoplasts, all three fragments of the 35S promoter (-419 to -90, -390 to -90 and -290 to -90, relative to the site of initiation of transcription), the intron, and the omega sequence effectively enhanced GUS activity. Some chimeric promoters allowed levels of GUS activity that were 20- to 70-fold higher than those obtained with the 35S promoter in pBI221. In tobacco protoplasts, the two longer fragments of the 35S promoter were more effective than the shortest fragment. In rice cells, by contrast, the shortest fragment was as effective as the two longer ones. The terminator of the 35S transcript was more effective than that of the nos gene for gene expression. In transgenic tobacco plants, a representative powerful promoter, as compared to the 35S promoter, allowed 10- and 50-fold higher levels of expression on average and at most, respectively, with no clear qualitative differences in tissue- and organ-specific patterns of expression. When the representative promoter was introduced into tobacco with a gene for luciferase, the autofluorescence of detached leaves after a supply of luciferin to petioles was great and was easily detectable by the naked eye in a dark room.

602 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a diffusion-reaction model, in which density dependent cell movements are incorporated by the level of nutrient concentration available for the cell, which predicts the growth velocity of a colony as a function of the nutrient concentration.

235 citations

Journal ArticleDOI
TL;DR: It is proposed that a mass conserved reaction–diffusion system with diffusion-driven instability is one of such principles of cell polarity, which is seen in various cell types such as migrating neutrophils and Dictyostelium cells.
Abstract: Cell polarity is a general cellular process that can be seen in various cell types such as migrating neutrophils and Dictyostelium cells The Rho small GTP(guanosine 5′-tri phosphate)ases have been shown to regulate cell polarity; however, its mechanism of emergence has yet to be clarified We first developed a reaction–diffusion model of the Rho GTPases, which exhibits switch-like reversible response to a gradient of extracellular signals, exclusive accumulation of Cdc42 and Rac, or RhoA at the maximal or minimal intensity of the signal, respectively, and tracking of changes of a signal gradient by the polarized peak The previous cell polarity models proposed by Subramanian and Narang show similar behaviors to our Rho GTPase model, despite the difference in molecular networks This led us to compare these models, and we found that these models commonly share instability and a mass conservation of components Based on these common properties, we developed conceptual models of a mass conserved reaction–diffusion system with diffusion–driven instability These conceptual models retained similar behaviors of cell polarity in the Rho GTPase model Using these models, we numerically and analytically found that multiple polarized peaks are unstable, resulting in a single stable peak (uniqueness of axis), and that sensitivity toward changes of a signal gradient is specifically restricted at the polarized peak (localized sensitivity) Although molecular networks may differ from one cell type to another, the behaviors of cell polarity in migrating cells seem similar, suggesting that there should be a fundamental principle Thus, we propose that a mass conserved reaction–diffusion system with diffusion-driven instability is one of such principles of cell polarity

202 citations

Journal ArticleDOI
TL;DR: A mathematical SELI model is constructed that not only simulates, but also predicts, experimental data and indicates that directional flow represents an initial small difference between the left and right sides of the embryo, but is insufficient to determine embryonic situs.

190 citations

Journal ArticleDOI
TL;DR: The theory assures that any long-term dynamical behavior of the whole system, such as steady states, periodic oscillations or quasi-periodic oscillations, can be identified by measurements of a subset of molecules in the network, and that the subset is determined from the regulatory linkage alone.

161 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants, and revealed freezing and dehydration tolerance.
Abstract: Plant growth is greatly affected by drought and low temperature. Expression of a number of genes is induced by both drought and low temperature, although these stresses are quite different. Previous experiments have established that a cis-acting element named DRE (for dehydration-responsive element) plays an important role in both dehydration- and low-temperature-induced gene expression in Arabidopsis. Two cDNA clones that encode DRE binding proteins, DREB1A and DREB2A, were isolated by using the yeast one-hybrid screening technique. The two cDNA libraries were prepared from dehydrated and cold-treated rosette plants, respectively. The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence similarity, except in the conserved DNA binding domains found in the EREBP and APETALA2 proteins that function in ethylene-responsive expression and floral morphogenesis, respectively. Both the DREB1A and DREB2A proteins specifically bound to the DRE sequence in vitro and activated the transcription of the b-glucuronidase reporter gene driven by the DRE sequence in Arabidopsis leaf protoplasts. Expression of the DREB1A gene and its two homologs was induced by low-temperature stress, whereas expression of the DREB2A gene and its single homolog was induced by dehydration. Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants. These transgenic plants also revealed freezing and dehydration tolerance. In contrast, overexpression of the DREB2A cDNA induced weak expression of the target genes under unstressed conditions and caused growth retardation of the transgenic plants. These results indicate that two independent families of DREB proteins, DREB1 and DREB2, function as trans-acting factors in two separate signal transduction pathways under low-temperature and dehydration conditions, respectively.

2,886 citations

Journal ArticleDOI
TL;DR: This article showed that over-expression of the cDNA encoding DREB1A in transgenic plants activated the expression of many of these stress tolerance genes under normal growing conditions and resulted in improved tolerance to drought, salt loading, and freezing.
Abstract: Plant productivity is greatly affected by environmental stresses such as drought, salt loading, and freezing. We reported previously that a cis-acting promoter element, the dehydration response element (DRE), plays an important role in regulating gene expression in response to these stresses. The transcription factor DREB1A specifically interacts with the DRE and induces expression of stress tolerance genes. We show here that overexpression of the cDNA encoding DREB1A in transgenic plants activated the expression of many of these stress tolerance genes under normal growing conditions and resulted in improved tolerance to drought, salt loading, and freezing. However, use of the strong constitutive 35S cauliflower mosaic virus (CaMV) promoter to drive expression of DREB1A also resulted in severe growth retardation under normal growing conditions. In contrast, expression of DREB1A from the stress inducible rd29A promoter gave rise to minimal effects on plant growth while providing an even greater tolerance to stress conditions than did expression of the gene from the CaMV promoter.

1,968 citations

Journal ArticleDOI
TL;DR: OsDREB1A is potentially useful for producing transgenic monocots that are tolerant to drought, high-salt, and/or cold stresses and has functional similarity to DREB 1A, however, in microarray and RNA blot analyses, some stress-inducible target genes of the DREb1A proteins that have only ACCGAC as DRE were not over-expressed in the OsDRE B1A transgenic Arabidopsis.
Abstract: Summary The transcription factors DREBs/CBFs specifically interact with the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element (core motif: G/ACCGAC) and control the expression of many stress-inducible genes in Arabidopsis. In rice, we isolated five cDNAs for DREB homologs: OsDREB1A, OsDREB1B, OsDREB1C, OsDREB1D, and OsDREB2A. Expression of OsDREB1A and OsDREB1B was induced by cold, whereas expression of OsDREB2A was induced by dehydration and high-salt stresses. The OsDREB1A and OsDREB2A proteins specifically bound to DRE and activated the transcription of the GUS reporter gene driven by DRE in rice protoplasts. Over-expression of OsDREB1A in transgenic Arabidopsis induced over-expression of target stress-inducible genes of Arabidopsis DREB1A resulting in plants with higher tolerance to drought, high-salt, and freezing stresses. This indicated that OsDREB1A has functional similarity to DREB1A. However, in microarray and RNA blot analyses, some stress-inducible target genes of the DREB1A proteins that have only ACCGAC as DRE were not over-expressed in the OsDREB1A transgenic Arabidopsis. The OsDREB1A protein bound to GCCGAC more preferentially than to ACCGAC whereas the DREB1A proteins bound to both GCCGAC and ACCGAC efficiently. The structures of DREB1-type ERF/AP2 domains in monocots are closely related to each other as compared with that in the dicots. OsDREB1A is potentially useful for producing transgenic monocots that are tolerant to drought, high-salt, and/or cold stresses.

1,501 citations

Journal ArticleDOI
20 Jul 2016-Neuron
TL;DR: Current understanding of neocortical interneuron diversity and the properties that distinguish cell types are reviewed and it is illustrated how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.

1,358 citations