scispace - formally typeset
Search or ask a question
Author

Audrey Guérardel

Bio: Audrey Guérardel is an academic researcher from University of Geneva. The author has contributed to research in topics: Cellular differentiation & Adipose tissue. The author has an hindex of 6, co-authored 6 publications receiving 186 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that Pax6 is critical for α cell function and differentiation through the transcriptional control of key genes involved in glucagon gene transcription, proglucagon processing, and α cell differentiation.

71 citations

Journal ArticleDOI
TL;DR: The results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.
Abstract: The Forkhead box A transcription factors are major regulators of glucose homeostasis. They show both distinct and redundant roles during pancreas development and in adult mouse β-cells. In vivo ablation studies have revealed critical implications of Foxa1 on glucagon biosynthesis and requirement of Foxa2 in α-cell terminal differentiation. In order to examine the respective role of these factors in mature α-cells, we used small interfering RNA (siRNA) directed against Foxa1 and Foxa2 in rat primary pancreatic α-cells and rodent α-cell lines leading to marked decreases in Foxa1 and Foxa2 mRNA levels and proteins. Both Foxa1 and Foxa2 control glucagon gene expression specifically through the G2 element. Although we found that Foxa2 controls the expression of the glucagon, MafB, Pou3f4, Pcsk2, Nkx2.2, Kir6.2, and Sur1 genes, Foxa1 only regulates glucagon gene expression. Interestingly, the Isl1 and Gipr genes were not controlled by either Foxa1 or Foxa2 alone but by their combination. Foxa1 and Foxa2 directly activate and bind the promoter region the Nkx2.2, Kir6.2 and Sur1, Gipr, Isl1, and Pou3f4 genes. We also demonstrated that glucagon secretion is affected by the combined effects of Foxa1 and Foxa2 but not by either one alone. Our results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.

40 citations

Journal ArticleDOI
16 Nov 2012-PLOS ONE
TL;DR: Results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.
Abstract: Poor fetal growth, also known as intrauterine growth restriction (IUGR), is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious "metabolic programming." In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX) or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN). Physiological (glucose and insulin tolerance), morphometric (automated tissue image analysis) and transcriptomic (quantitative PCR) approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.

38 citations

Journal ArticleDOI
TL;DR: The results indicate that Pax 6 acts on the regulation of glucagon secretion at least through the transcriptional control of GCK, GPR40, and GIPR and propose that Pax6 is not only critical for glucagon biosynthesis but also for glucagons secretion particularly in response to nutrients.
Abstract: The Pax6 transcription factor is crucial for pancreatic α-cells. Indeed, Pax6-deficient mouse models are characterized by markedly altered α-cell differentiation. Our objective was to investigate the role of Pax6 in glucagon secretion process. We used a Pax6-deficient model in rat primary enriched-α cells with specific small interfering RNA leading to a 70% knockdown of Pax6 expression. We first showed that Pax6 knockdown decreases glucagon biosynthesis as well as glucagon release. Through physiological assays, we demonstrated that the decrease of Pax6 affects specifically acute glucagon secretion in primary α-cell in response to glucose, palmitate, and glucose-dependent insulinotropic peptide (GIP) but not the response to arginine and epinephrine. We identified in Pax6 knockdown model that genes involved in glucagon secretion such as the glucokinase (GCK), G protein-coupled receptor (GPR40), and GIP receptor (GIPR) as well as the corresponding proteins were significantly decreased whereas the insulin receptor (IR) Kir6.2/Sur1, and glucose transporter 1 genes were not affected. We demonstrated that Pax6 directly binds and activates specific elements on the promoter region of the GPR40, GCK, and GIPR genes. Finally, through site-directed mutagenesis experiments, we showed that disruption of Pax6 binding on the GCK, GPR40, and GIPR gene promoters led to specific decreases of their activities in the αTC1.9 glucagon-producing cell line. Hence our results indicate that Pax6 acts on the regulation of glucagon secretion at least through the transcriptional control of GCK, GPR40, and GIPR. We propose that Pax6 is not only critical for glucagon biosynthesis but also for glucagon secretion particularly in response to nutrients.

30 citations

Journal ArticleDOI
TL;DR: In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nA ChR(-/+) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2n aChR deficiency.

24 citations


Cited by
More filters
Journal Article
TL;DR: The persistence of such programming effects through several generations, transmitted by either maternal or paternal lines, indicates the potential importance of epigenetic factors in the intergenerational inheritance of the "programming phenotype" and provides a basis for the inherited association between low birth weight and cardiovascular risk factors.
Abstract: Epidemiological studies linking low birth weight and subsequent cardiometabolic disease have given rise to the hypothesis that events in fetal life permanently program subsequent cardiovascular risk. The effects of fetal programming may not be limited to the first-generation offspring. We have explored intergenerational effects in the dexamethasone-programmed rat, a model in which fetal exposure to excess glucocorticoid results in low birth weight with subsequent adult hyperinsulinemia and hyperglycemia underpinned by increased activity of the key hepatic gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that the male offspring of female rats that had been exposed prenatally to dexamethasone, but were not manipulated in their own pregnancy, also had reduced birth weight (5.66 ± 0.06 vs. 6.12 ± 0.06 g, P < 0.001), glucose intolerance, and elevated hepatic PEPCK activity (5.7 ± 0.6 vs. 3.3 ± 0.2 nmol.min -1 .mg protein -1 , P < 0.001). These effects resolved in a third generation. Similar intergenerational programming was observed in offspring of male rats exposed prenatally to dexamethasone mated with control females. The persistence of such programming effects through several generations, transmitted by either maternal or paternal lines, indicates the potential importance of epigenetic factors in the intergenerational inheritance of the programming phenotype and provides a basis for the inherited association between low birth weight and cardiovascular risk factors.

352 citations

Journal ArticleDOI
TL;DR: This review has brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of Fetal growth restriction.
Abstract: Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions.

347 citations

Journal ArticleDOI
TL;DR: The Human Protein Atlas as a proteomic resource for biomarker discovery and its applications in medicine and drug discovery are reviewed.
Abstract: The analysis of tissue-specific expression at both the gene and protein levels is vital for understanding human biology and disease. Antibody-based proteomics provides a strategy for the systematic generation of antibodies against all human proteins to combine with protein profiling in tissues and cells using tissue microarrays, immunohistochemistry and immunofluorescence. The Human Protein Atlas project was launched in 2003 with the aim of creating a map of protein expression patterns in normal cells, tissues and cancer. At present, 11,200 unique proteins corresponding to over 50% of all human protein-encoding genes have been analysed. All protein expression data, including underlying high-resolution images, are published on the free and publically available Human Protein Atlas portal (http://www.proteinatlas.org). This database provides an important source of information for numerous biomedical research projects, including biomarker discovery efforts. Moreover, the global analysis of how our genome is expressed at the protein level has provided basic knowledge on the ubiquitous expression of a large proportion of our proteins and revealed the paucity of cell- and tissue-type-specific proteins.

214 citations

Journal ArticleDOI
TL;DR: It is revealed that Pdx1 can work single-handedly as a potent context-dependent autonomous reprogramming agent, and a postnatal differentiation evaluation stage involved in normal endocrine maturation is suggested.
Abstract: Using single transcription factors to reprogram cells could produce important insights into the epigenetic mechanisms that direct normal differentiation, or counter inappropriate plasticity, or even provide new ways of manipulating normal ontogeny in vitro to control lineage diversification and differentiation. We enforced Pdx1 expression from the Neurogenin-3-expressing endocrine commitment point onward and found during the embryonic period a minor increased β-cell allocation with accompanying reduced α-cell numbers. More surprisingly, almost all remaining Pdx1-containing glucagon/Arx-producing cells underwent a fairly rapid conversion at postnatal stages, through glucagon-insulin double positivity, to a state indistinguishable from normal β cells, resulting in complete α-cell absence. This α-to-β conversion was not caused by activating Pdx1 in the later glucagon-expressing state. Our findings reveal that Pdx1 can work single-handedly as a potent context-dependent autonomous reprogramming agent, and suggest a postnatal differentiation evaluation stage involved in normal endocrine maturation.

192 citations

Journal ArticleDOI
TL;DR: The regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development are described.

178 citations