scispace - formally typeset
Search or ask a question
Author

Audrey Partanen

Bio: Audrey Partanen is an academic researcher from Royal Melbourne Hospital. The author has contributed to research in topics: Progenitor & Progenitor cell. The author has an hindex of 1, co-authored 1 publications receiving 1212 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro, and the findings suggest that an aberrant luminalprogenitor population is a target for transformation in BRCa1-associated basal tumors.
Abstract: Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell-enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .

1,339 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Journal ArticleDOI
25 Mar 2011-Science
TL;DR: It is suggested that metastasis can be portrayed as a two-phase process: the first phase involves the physical translocation of a cancer cell to a distant organ, whereas the second encompasses the ability of the cancer cellto develop into a metastatic lesion at that distant site.
Abstract: Metastasis causes most cancer deaths, yet this process remains one of the most enigmatic aspects of the disease. Building on new mechanistic insights emerging from recent research, we offer our perspective on the metastatic process and reflect on possible paths of future exploration. We suggest that metastasis can be portrayed as a two-phase process: The first phase involves the physical translocation of a cancer cell to a distant organ, whereas the second encompasses the ability of the cancer cell to develop into a metastatic lesion at that distant site. Although much remains to be learned about the second phase, we feel that an understanding of the first phase is now within sight, due in part to a better understanding of how cancer cell behavior can be modified by a cell-biological program called the epithelial-to-mesenchymal transition.

3,993 citations

Journal ArticleDOI
TL;DR: Triple-negative breast cancer, so called because it lacks expression of the estrogen receptor, progesterone receptor, and HER2, is often, but not always, a basal-like breast cancer.
Abstract: Triple-negative breast cancer, so called because it lacks expression of the estrogen receptor, progesterone receptor, and HER2, is often, but not always, a basal-like breast cancer. This review focuses on its origin, molecular and clinical characteristics, and treatment.

3,125 citations

Journal ArticleDOI
26 Aug 2010-Oncogene
TL;DR: This review will provide potential mechanistic explanations for the association between EMT induction and the emergence of CSCs, and highlight recent studies implicating the function of TGF-β-regulated noncoding RNAs in driving EMT and promoting CSC self-renewal.
Abstract: Tumors are cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like features (CSCs). Epithelial to mesenchymal transitions (EMT) are transdifferentiation programs that are required for tissue morphogenesis during embryonic development. The EMT process can be regulated by a diverse array of cytokines and growth factors, such as transforming growth factor (TGF)-β, whose activities are dysregulated during malignant tumor progression. Thus, EMT induction in cancer cells results in the acquisition of invasive and metastatic properties. Recent reports indicate that the emergence of CSCs occurs in part as a result of EMT, for example, through cues from tumor stromal components. Recent evidence now indicates that EMT of tumor cells not only causes increased metastasis, but also contributes to drug resistance. In this review, we will provide potential mechanistic explanations for the association between EMT induction and the emergence of CSCs. We will also highlight recent studies implicating the function of TGF-β-regulated noncoding RNAs in driving EMT and promoting CSC self-renewal. Finally we will discuss how EMT and CSCs may contribute to drug resistance, as well as therapeutic strategies to overcome this clinically.

2,342 citations

Journal ArticleDOI
TL;DR: It is confirmed that a prognostically relevant differentiation hierarchy exists across all breast cancers in which the claudin-low subtype most closely resembles the mammary epithelial stem cell.
Abstract: Introduction In breast cancer, gene expression analyses have defined five tumor subtypes (luminal A, luminal B, HER2-enriched, basal-like and claudin-low), each of which has unique biologic and prognostic features. Here, we comprehensively characterize the recently identified claudin-low tumor subtype.

1,991 citations