scispace - formally typeset
Search or ask a question
Author

Aurel J. Acher

Bio: Aurel J. Acher is an academic researcher from University of Marne-la-Vallée. The author has contributed to research in topics: Mineralization (soil science) & Nitrophenol. The author has an hindex of 1, co-authored 1 publications receiving 463 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An indirect electrochemical method, which is very efficient for the degradation of organic pollutants in water, is described in this paper, which is based on electrocatalytical generation of Fenton's reagent to produce hydroxyl radicals, which are very active toward organic compounds.
Abstract: An indirect electrochemical method, which is very efficient for the degradation of organic pollutants in water, is described. The method, named electro-Fenton, is based on electrocatalytical generation of Fenton's reagent to produce hydroxyl radicals, which are very active toward organic compounds. An industrial pollutant, p-nitrophenol (PNP), was chosen for this study and was eventually mineralized. The major intermediary degradation products such as hydroquinone, benzoquinone, 4-nitrocatechol, 1,2,4-trihydroxybenzene and 3,4,5-trihydroxy- nitrobenzene were unequivocally identified by HPLC and GC-MS methods. The rate constants of the hydroxylation reactions were determined. The mineralization of the initial pollutant and the intermediates formed during electro-Fenton treatment was followed by total organic carbon (TOC) analyses. Dependence of mineralization on the amount of electrical energy consumed is shown by the relative decrease of TOC values. A mineralization reaction mechanism is proposed.

511 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed.
Abstract: Fenton chemistry encompasses reactions of hydrogen peroxide in the presence of iron to generate highly reactive species such as the hydroxyl radical and possibly others. In this review, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed. The review covers modified versions including the photoassisted Fenton reaction, use of chelated iron, electro-Fenton reactions, and Fenton reactions using heterogeneous catalysts. Sections are devoted to nonclassical pathways, by-products, kinetics and process modeling, experimental design methodology, soil and aquifer treatment, use of Fenton in combination with other advanced oxidation processes or biodegradation, economic comparison with other advanced oxidation processes, and case studies.

3,218 citations

Journal ArticleDOI
TL;DR: Electro-Fenton (EF) Process 6585 4.2.1.
Abstract: 2.2. Fenton’s Chemistry 6575 2.2.1. Origins 6575 2.2.2. Fenton Process 6575 2.3. Photo-Fenton Process 6577 3. H2O2 Electrogeneration for Water Treatment 6577 3.1. Fundamentals 6578 3.2. Cathode Materials 6579 3.3. Divided Cells 6580 3.4. Undivided Cells 6583 4. Electro-Fenton (EF) Process 6585 4.1. Origins 6585 4.2. Fundamentals of EF for Water Remediation 6586 4.2.1. Cell Configuration 6586 4.2.2. Cathodic Fe2+ Regeneration 6586 4.2.3. Anodic Generation of Heterogeneous Hydroxyl Radical 6587

2,652 citations

Journal ArticleDOI
TL;DR: Advanced oxidation processes (AOPs) constitute important, promising, efficient, and environmental-friendly methods developed to principally remove persistent organic pollutants (POP) from waters and wastewaters.
Abstract: Advanced oxidation processes (AOPs) constitute important, promising, efficient, and environmental-friendly methods developed to principally remove persistent organic pollutants (POPs) from waters and wastewaters. Generally, AOPs are based on the in situ generation of a powerful oxidizing agent, such as hydroxyl radicals (•OH), obtained at a sufficient concentration to effectively decontaminate waters. This critical review presents a precise and overall description of the recent literature (period 1990–2012) concerning the main types of AOPs, based on chemical, photochemical, sonochemical, and electrochemical reactions. The principles, performances, advantages, drawbacks, and applications of these AOPs to the degradation and destruction of POPs in aquatic media and to the treatment of waters and waste waters have been reported and compared.

1,550 citations

Journal ArticleDOI
TL;DR: The advantage of Co/PMS compared to the traditional Fenton Reagent is attributed primarily to the oxidizing strength of the radicals formed, since sulfate radicals are stronger oxidants than hydroxyl and the thermodynamics of the transition-metal-oxidant coupling.
Abstract: A highly efficient advanced oxidation process for the destruction of organic contaminants in water is reported. The technology is based on the cobalt-mediated decomposition of peroxymonosulfate that leads to the formation of very strong oxidizing species (sulfate radicals) in the aqueous phase. The system is a modification of the Fenton Reagent, since an oxidant is coupled with a transition metal in a similar manner. Sulfate radicals were identified with quenching studies using specific alcohols. The study was primarily focused on comparing the cobalt/peroxymonosulfate (Co/PMS) reagent with the traditional Fenton Reagent [Fe(II)/H2O2] in the dark, at the pH range 2.0-9.0 with and without the presence of buffers such as phosphate and carbonate. Three model contaminants that show diversity in structure were tested: 2,4-dichlorophenol, atrazine, and naphthalene. Cobalt/peroxymonosulfate was consistently proven to be more efficient than the Fenton Reagent for the degradation of 2,4-dichlorophenol and atrazine, at all the conditions tested. At high pH values, where the efficiency of the Fenton Reagent was diminished, the reactivity of the Co/PMS system was sustained at high values. When naphthalene was treated with the two oxidizing systems in comparison, the Fenton Reagent demonstrated higher degradation efficiencies than cobalt/peroxymonosulfate at acidic pH, but, at higher pH (neutral), the latter was proven much more effective. The extent of mineralization, as total organic carbon removed,was also monitored, and again the Co/PMS reagent demonstrated higher efficiencies than the Fenton Reagent. Cobalt showed true catalytic activity in the overall process, since extremely low concentrations (in the range of microg/L) were sufficient for the decomposition of the oxidant and thus the radical generation. The advantage of Co/PMS compared to the traditional Fenton Reagent is attributed primarily to the oxidizing strength of the radicals formed, since sulfate radicals are stronger oxidants than hydroxyl and the thermodynamics of the transition-metal-oxidant coupling.

1,390 citations

Journal ArticleDOI
TL;DR: The recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium are provided to indicate that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents.

756 citations