scispace - formally typeset
Search or ask a question
Author

Aurelien Lucchi

Bio: Aurelien Lucchi is an academic researcher from ETH Zurich. The author has contributed to research in topics: Rate of convergence & Computer science. The author has an hindex of 35, co-authored 118 publications receiving 10254 citations. Previous affiliations of Aurelien Lucchi include Google & École Polytechnique Fédérale de Lausanne.


Papers
More filters
Proceedings Article
07 Dec 2015
TL;DR: In this paper, the authors exploit neighborhood structure in the training data to share and re-use information about past stochastic gradients across data points, which offers advantages in the transient optimization phase.
Abstract: Stochastic Gradient Descent (SGD) is a workhorse in machine learning, yet its slow convergence can be a computational bottleneck. Variance reduction techniques such as SAG, SVRG and SAGA have been proposed to overcome this weakness, achieving linear convergence. However, these methods are either based on computations of full gradients at pivot points, or on keeping per data point corrections in memory. Therefore speed-ups relative to SGD may need a minimal number of epochs in order to materialize. This paper investigates algorithms that can exploit neighborhood structure in the training data to share and re-use information about past stochastic gradients across data points, which offers advantages in the transient optimization phase. As a side-product we provide a unified convergence analysis for a family of variance reduction algorithms, which we call memorization algorithms. We provide experimental results supporting our theory.

102 citations

Proceedings ArticleDOI
03 Apr 2017
TL;DR: The authors leverage large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrate the importance of using pre-training of such networks.
Abstract: This paper presents a novel approach for multi-lingual sentiment classification in short texts. This is a challenging task as the amount of training data in languages other than English is very limited. Previously proposed multi-lingual approaches typically require to establish a correspondence to English for which powerful classifiers are already available. In contrast, our method does not require such supervision. We leverage large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrate the importance of using pre-training of such networks. We thoroughly evaluate our approach on various multi-lingual datasets, including the recent SemEval-2016 sentiment prediction benchmark (Task 4), where we achieved state-of-the-art performance. We also compare the performance of our model trained individually for each language to a variant trained for all languages at once. We show that the latter model reaches slightly worse - but still acceptable - performance when compared to the single language model, while benefiting from better generalization properties across languages.

101 citations

Journal ArticleDOI
TL;DR: In this paper, a convolutional neural network (CNN) was used to constrain the total matter density, fluctuation amplitude, and intrinsic alignment amplitude of weak lensing mass maps.
Abstract: Convolutional neural networks (CNNs) have recently been demonstrated on synthetic data to improve upon the precision of cosmological inference. In particular, they have the potential to yield more precise cosmological constraints from weak lensing mass maps than the two-point functions. We present the cosmological results with a CNN from the KiDS-450 tomographic weak lensing dataset, constraining the total matter density ${\mathrm{\ensuremath{\Omega}}}_{\mathrm{m}}$, the fluctuation amplitude ${\ensuremath{\sigma}}_{8}$, and the intrinsic alignment amplitude ${A}_{\mathrm{IA}}$. We use a grid of N-body simulations to generate a training set of tomographic weak lensing maps. We test the robustness of the expected constraints to various effects, such as baryonic feedback, simulation accuracy, a different value of ${H}_{0}$, or the light cone projection technique. We train a set of ResNet-based CNNs with varying depths to analyze sets of tomographic KiDS mass maps divided into 20 flat regions, with applied Gaussian smoothing of $\ensuremath{\sigma}=2.34\text{ }\text{ }\mathrm{arc}\text{ }\mathrm{min}$. The uncertainties on shear calibration and $n(z)$ error are marginalized in the likelihood pipeline. Following a blinding scheme, we derive constraints on ${S}_{8}={\ensuremath{\sigma}}_{8}({\mathrm{\ensuremath{\Omega}}}_{\mathrm{m}}/0.3{)}^{0.5}=0.77{7}_{\ensuremath{-}0.036}^{+0.038}$ with our CNN analysis, with ${A}_{\mathrm{IA}}=1.39{8}_{\ensuremath{-}0.724}^{+0.779}$. We compare this result to the power spectrum analysis on the same maps and likelihood pipeline and find an improvement of about 30% for the CNN. We discuss how our results offer excellent prospects for the use of deep learning in future cosmological data analysis.

100 citations

Posted Content
TL;DR: This paper presents a novel approach for multi-lingual sentiment classification in short texts by leveraging large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrates the importance of using pre-training of such networks.
Abstract: This paper presents a novel approach for multi-lingual sentiment classification in short texts. This is a challenging task as the amount of training data in languages other than English is very limited. Previously proposed multi-lingual approaches typically require to establish a correspondence to English for which powerful classifiers are already available. In contrast, our method does not require such supervision. We leverage large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrate the importance of using pre-training of such networks. We thoroughly evaluate our approach on various multi-lingual datasets, including the recent SemEval-2016 sentiment prediction benchmark (Task 4), where we achieved state-of-the-art performance. We also compare the performance of our model trained individually for each language to a variant trained for all languages at once. We show that the latter model reaches slightly worse - but still acceptable - performance when compared to the single language model, while benefiting from better generalization properties across languages.

99 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: A working set based approximate sub gradient descent algorithm to minimize the margin-sensitive hinge loss arising from the soft constraints in max-margin learning frameworks, such as the structured SVM is proposed.
Abstract: We propose a working set based approximate sub gradient descent algorithm to minimize the margin-sensitive hinge loss arising from the soft constraints in max-margin learning frameworks, such as the structured SVM. We focus on the setting of general graphical models, such as loopy MRFs and CRFs commonly used in image segmentation, where exact inference is intractable and the most violated constraints can only be approximated, voiding the optimality guarantees of the structured SVM's cutting plane algorithm as well as reducing the robustness of existing sub gradient based methods. We show that the proposed method obtains better approximate sub gradients through the use of working sets, leading to improved convergence properties and increased reliability. Furthermore, our method allows new constraints to be randomly sampled instead of computed using the more expensive approximate inference techniques such as belief propagation and graph cuts, which can be used to reduce learning time at only a small cost of performance. We demonstrate the strength of our method empirically on the segmentation of a new publicly available electron microscopy dataset as well as the popular MSRC data set and show state-of-the-art results.

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work addresses the task of semantic image segmentation with Deep Learning and proposes atrous spatial pyramid pooling (ASPP), which is proposed to robustly segment objects at multiple scales, and improves the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models.
Abstract: In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First , we highlight convolution with upsampled filters, or ‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second , we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third , we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed “DeepLab” system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.

11,856 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper exploits the capability of global context information by different-region-based context aggregation through the pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet) to produce good quality results on the scene parsing task.
Abstract: Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

10,189 citations

Posted Content
TL;DR: DeepLab as discussed by the authors proposes atrous spatial pyramid pooling (ASPP) to segment objects at multiple scales by probing an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views.
Abstract: In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.

10,120 citations

Journal ArticleDOI
TL;DR: A new superpixel algorithm is introduced, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels and is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Abstract: Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.

7,849 citations