scispace - formally typeset
Search or ask a question
Author

Austin Ostermeier

Bio: Austin Ostermeier is an academic researcher from Stanford University. The author has contributed to research in topics: Progenitor cell & Embryonic stem cell. The author has an hindex of 4, co-authored 4 publications receiving 3837 citations.

Papers
More filters
Journal ArticleDOI
25 Feb 2010-Nature
TL;DR: In this paper, a combination of three transcription factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, was used to convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro.
Abstract: Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.

2,730 citations

Journal ArticleDOI
11 Aug 2011-Nature
TL;DR: The data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors.
Abstract: Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang et al. show that a combination of the three transcription factors Ascl1 (also known as Mash1), Brn2 (or Pou3f2) and Myt1l greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo et al. use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are Mash1, Nurr1 (or Nr4a2) and Lmx1a. Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo et al. use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors. Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types1,2,3,4,5,6,7,8,9,10,11,12. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells13. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.

1,180 citations

Journal ArticleDOI
TL;DR: Mice lacking all three Rb genes in the liver develop tumors resembling specific subgroups of human hepatocellular carcinomas, and Notch activity appears to suppress the growth and progression of these tumors.
Abstract: Hepatocellular carcinoma (HCC) is the third cancer killer worldwide with >600,000 deaths every year. Although the major risk factors are known, therapeutic options in patients remain limited in part because of our incomplete understanding of the cellular and molecular mechanisms influencing HCC development. Evidence indicates that the retinoblastoma (RB) pathway is functionally inactivated in most cases of HCC by genetic, epigenetic, and/or viral mechanisms. To investigate the functional relevance of this observation, we inactivated the RB pathway in the liver of adult mice by deleting the three members of the Rb (Rb1) gene family: Rb, p107, and p130. Rb family triple knockout mice develop liver tumors with histopathological features and gene expression profiles similar to human HCC. In this mouse model, cancer initiation is associated with the specific expansion of populations of liver stem/progenitor cells, indicating that the RB pathway may prevent HCC development by maintaining the quiescence of adult liver progenitor cells. In addition, we show that during tumor progression, activation of the Notch pathway via E2F transcription factors serves as a negative feedback mechanism to slow HCC growth. The level of Notch activity is also able to predict survival of HCC patients, suggesting novel means to diagnose and treat HCC.

198 citations

Patent
19 Jan 2011
TL;DR: In this article, methods, compositions and kits for producing functional neurons, astroctyes, oligodendrocytes and progenitor cells thereof are provided, for transplantation, for experimental evaluation, as a source of lineage-and cell-specific products, and the like, for use in treating human disorders of the CNS.
Abstract: Methods, compositions and kits for producing functional neurons, astroctyes, oligodendrocytes and progenitor cells thereof are provided. These methods, compositions and kits find use in producing neurons, astrocytes, oligodendrocytes, and progenitor cells thereof for transplantation, for experimental evaluation, as a source of lineage- and cell-specific products, and the like, for example for use in treating human disorders of the CNS. Also provided are methods, compositions and kits for screening candidate agents for activity in converting cells into neuronal cells, astrocytes, oligodendrocytes, and progenitor cells thereof.

29 citations

Journal ArticleDOI
TL;DR: In this paper , the association between target attainment and clinical outcomes in critically ill children and young adults with sepsis was studied and shown to be positively associated with the use of antibiotics like ceftriaxone.
Abstract: Early sepsis results in pharmacokinetic (PK) changes due to physiologic alterations. PK changes can lead to suboptimal drug target attainment, risking inadequate coverage from antibiotics like ceftriaxone. Little is known about how ceftriaxone PK and target attainment quantitatively change over time in patients with sepsis or the association between target attainment and outcomes in critically ill children and young adults.

Cited by
More filters
Journal ArticleDOI
06 Aug 2010-Cell
TL;DR: It is believed that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors, and the reprogramming of endogenous or explanted fibroblasts might provide a source of cardiomeocytes for regenerative approaches.

2,258 citations

Journal ArticleDOI
TL;DR: A Cas9-based transactivator that is targeted to DNA sequences by guide RNA molecules is created, demonstrating a simple and versatile approach for RNA-guided gene activation.
Abstract: Technologies for engineering synthetic transcription factors have enabled many advances in medical and scientific research. In contrast to existing methods based on engineering of DNA-binding proteins, we created a Cas9-based transactivator that is targeted to DNA sequences by guide RNA molecules. Coexpression of this transactivator and combinations of guide RNAs in human cells induced specific expression of endogenous target genes, demonstrating a simple and versatile approach for RNA-guided gene activation.

1,247 citations

Journal ArticleDOI
31 May 2012-Nature
TL;DR: In this article, the authors used genetic lineage tracing to show that resident nonmyocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation.
Abstract: The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin b4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. Heart failure affects over 14 million people worldwide and is a leading cause of death in adults and in children. Because postnatal cardiomyocytes (CMs) have little or no regenerative capacity, therapies are limited at present. The introduction of exogenous stem-cell-derived CMs holds promise, but also challenges, including delivery, integration, rejection and cellular maturation 1–3 . Reprogramming adult fibroblasts into induced pluripotent stem cells (iPSCs) that are similar to embryonic stem cells addresses some issues 4–6 , but others, including efficient directed differentiation into CMs and effective delivery, remain. A new generation of reprogramming technology involves transdifferentiating one adult somatic cell type directly into another 7–11 . We reported direct reprogramming of fibroblasts into CM-like cells in vitro by expressing three transcription factors: Gata4, Mef2c and Tbx5 (GMT) 7 . As observed in reprogramming to iPSCs, the percentage of fibroblast cells fully reprogrammed to beating CMs in vitro was small, but far more were partially reprogrammed, much like preiPSCs that can become fully pluripotent with additional stimuli 12 . We posited that cardiac fibroblasts may reprogram more fully in vivo in their native environment, which might promote survival, maturation, and coupling with neighbouring cells. If so, the vast pool of cardiac fibroblasts in the heart could serve as an endogenous source of new CMs for regenerative therapy.

1,195 citations

Journal ArticleDOI
14 Mar 2013-Cell
TL;DR: Recent advances in understanding of transcriptional regulation are reviewed and how these have provided new insights into transcriptional misregulation in disease are discussed.

1,180 citations

Journal ArticleDOI
11 Aug 2011-Nature
TL;DR: The data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors.
Abstract: Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang et al. show that a combination of the three transcription factors Ascl1 (also known as Mash1), Brn2 (or Pou3f2) and Myt1l greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo et al. use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are Mash1, Nurr1 (or Nr4a2) and Lmx1a. Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo et al. use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors. Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types1,2,3,4,5,6,7,8,9,10,11,12. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells13. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.

1,180 citations