scispace - formally typeset
Search or ask a question
Author

Austin R. Frey

Bio: Austin R. Frey is an academic researcher. The author has contributed to research in topics: Absorption (acoustics) & Acoustic wave equation. The author has an hindex of 3, co-authored 3 publications receiving 4711 citations.

Papers
More filters
Book
01 Jan 1950
TL;DR: In this article, the authors present a two-dimensional wave equation and simple solutions for the wave equation with respect to the two dimensions of the wave and the two types of vibrations.
Abstract: Fundamentals of Vibration. Transverse Motion: The Vibrating String. Vibrations of Bars. The Two--Dimensional Wave Equation: Vibrations of Membranes and Plates. The Acoustic Wave Equation and Simple Solutions. Reflection and Transmission. Radiation and Reception of Acoustic Waves. Absorption and Attenuation of Sound. Cavities and Waveguides. Pipes, Resonators, and Filters. Noise, Signal Detection, Hearing, and Speech. Architectural Acoustics. Environmental Acoustics. Transduction. Underwater Acoustics. Selected Nonlinear Acoustic Effects. Shock Waves and Explosions. Appendices. Answers to Odd--Numbered Problems. Index.

4,047 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a two-dimensional wave equation and simple solutions for the wave equation with respect to the two dimensions of the wave and the two types of vibrations.
Abstract: Fundamentals of Vibration. Transverse Motion: The Vibrating String. Vibrations of Bars. The Two--Dimensional Wave Equation: Vibrations of Membranes and Plates. The Acoustic Wave Equation and Simple Solutions. Reflection and Transmission. Radiation and Reception of Acoustic Waves. Absorption and Attenuation of Sound. Cavities and Waveguides. Pipes, Resonators, and Filters. Noise, Signal Detection, Hearing, and Speech. Architectural Acoustics. Environmental Acoustics. Transduction. Underwater Acoustics. Selected Nonlinear Acoustic Effects. Shock Waves and Explosions. Appendices. Answers to Odd--Numbered Problems. Index.

500 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new class of ultrasonic metamaterials consisting of an array of subwavelength Helmholtz resonators with designed acoustic inductance and capacitance with an effective dynamic modulus with negative values near the resonance frequency is reported.
Abstract: The emergence of artificially designed subwavelength electromagnetic materials, denoted metamaterials, has significantly broadened the range of material responses found in nature. However, the acoustic analogue to electromagnetic metamaterials has, so far, not been investigated. We report a new class of ultrasonic metamaterials consisting of an array of subwavelength Helmholtz resonators with designed acoustic inductance and capacitance. These materials have an effective dynamic modulus with negative values near the resonance frequency. As a result, these ultrasonic metamaterials can convey acoustic waves with a group velocity antiparallel to phase velocity, as observed experimentally. On the basis of homogenized-media theory, we calculated the dispersion and transmission, which agrees well with experiments near 30 kHz. As the negative dynamic modulus leads to a richness of surface states with very large wavevectors, this new class of acoustic metamaterials may offer interesting applications, such as acoustic negative refraction and superlensing below the diffraction limit.

1,562 citations

Journal ArticleDOI
TL;DR: In addition to frequency-dependent attenuation, two kinds of degradation during atmospheric transmission will limit a receiver's ability to resolve differences among acoustic signals: the accumulation of irregular amplitude fluctuations from nonstationary heterogeneities, often atmospheric turbulence, and reverberation.
Abstract: 1. Acoustic communication requires not only detection of the signal but also discrimination of differences among signals by the receiver. Attenuation and degradation of acoustic signals during transmission through the atmosphere will impose limits on acoustic communication. Attenuation of sound during atmospheric transmission results primarily from atmospheric absorption, ground attenuation, scattering of a sound beam, and deflection of sound by stratified media. For maximum range of detection, therefore, animals should favor optimal positions in their habitat and optimal weather conditions. Frequency-dependent attenuation seems not to differ consistently among major classes of terrestrial habitats, such as forests and fields. Increased scattering of higher frequencies from vegetation in forests is in part matched by scattering from micrometerological heterogeneities in the open. 2. In addition to frequency-dependent attenuation, two kinds of degradation during atmospheric transmission will limit a receiver's ability to resolve differences among acoustic signals: the accumulation of irregular amplitude fluctuations from nonstationary heterogeneities, often atmospheric turbulence, and reverberation. Both types of degradation affect temporal patterns of amplitude or intensity modulation more than patterns of frequency modulation. Both effects should increase with carrier frequency, as they depend on the relationship between wavelength and the dimensions of scattering heterogeneities. Irregular amplitude fluctuations are more severe in open habitats and primarily mask low frequencies of amplitude modulation; reverberations are more severe in forested habitats and primarily mask high frequencies of amplitude modulation and rapid, repetitive frequency modulation. This difference between forested and open habitats could explain previous reports that birds in the undergrowth of tropical forests avoid rapid frequency modulation in their long-range vocalizations. 3. Maximum range of detection is probably not the primary selection pressure on many animal vocalizations, even for territorial advertisement, except perhaps in tropical forests. Instead, acoustic signals might incorporate features that degrade predictably with range to permit a receiver to estimate the signaler's distance. Future investigations might explore the propagation of animal vocalizations in relation to the usual spacing of animals in their habitat. Features that encode different kinds of information, such as individual and species identity, might propagate to different distances. 4. Measurements of the transmission of sound in natural environments have often not controlled several important parameters. First, the effects of gound attenuation and scattering are not linear with range; consequently measurements of excess attenuation over different ranges in the same environment might differ. Second, the directionality of speakers and microphones will affect measurements of attenuation and reverberations in scattering environments. Third, as stationary waves shift with frequency, any single microphone placement will lie in a null for some frequencies and in a maximum for others.

1,015 citations

Book
11 Aug 2014
TL;DR: The semi-analytical finite element method (SAFE) has been used for guided wave modeling as discussed by the authors, which has been shown to be useful in the analysis and display of non-destructive testing.
Abstract: Preface Acknowledgments 1. Introduction 2. Dispersion principles 3. Unbounded isotropic and anisotropic media 4. Reflection and refraction 5. Oblique incidence 6. Waves in plates 7. Surface and subsurface waves 8. Finite element method for guided wave mechanics 9. The semi-analytical finite element method (SAFE) 10. Guided waves in hollow cylinders 11. Circumferential guided waves 12. Guided waves in layered structures 13. Source influence on guided wave excitation 14. Horizontal shear 15. Guided waves in anisotropic media 16. Guided wave phased arrays in piping 17. Guided waves in viscoelastic media 18. Ultrasonic vibrations 19. Guided wave array transducers 20. Introduction to guided wave nonlinear methods 21. Guided wave imaging methods Appendix A: ultrasonic nondestructive testing principles, analysis and display technology Appendix B: basic formulas and concepts in the theory of elasticity Appendix C: physically based signal processing concepts for guided waves Appendix D: guided wave mode and frequency selection tips.

823 citations

Journal ArticleDOI
TL;DR: The experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow, and indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.
Abstract: Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (� 6d B=m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64 kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.

791 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the interaction between oscillations and waves, and describe the absorption of wave energy by oscillating bodies by wave-energy absorption by oscillated bodies, as well as wave interactions with oscillating water columns.
Abstract: 1. Introduction 2. Mathematical description of oscillations 3. Interaction between oscillations and waves 4. Gravity waves on water 5. Wave-body interactions 6. Wave-energy absorption by oscillating bodies 7. Wave interactions with oscillating water columns Bibliography Index.

743 citations