scispace - formally typeset
Search or ask a question
Author

Avigdor Shafferman

Other affiliations: Aeras
Bio: Avigdor Shafferman is an academic researcher from Israel Institute for Biological Research. The author has contributed to research in topics: Bacillus anthracis & Yersinia pestis. The author has an hindex of 51, co-authored 183 publications receiving 7527 citations. Previous affiliations of Avigdor Shafferman include Aeras.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that the conformational flexibility of aromatic residues generates a plasticity in the active center that contributes to the high efficiency of AChE and its ability to respond to external stimuli.

319 citations

Journal ArticleDOI
TL;DR: The present findings are consistent with the notion that the main role of this network is the proper positioning of the Glu202 carboxylate relative to the catalytic triad, thus defining its functional role in the interaction of acetylcholinesterase with substrates and inhibitors.
Abstract: Structures of recombinant wild-type human acetylcholinesterase and of its E202Q mutant as complexes with fasciculin-II, a `three-finger' polypeptide toxin purified from the venom of the eastern green mamba (Dendroaspis angusticeps), are reported. The structure of the complex of the wild-type enzyme was solved to 2.8 A resolution by molecular replacement starting from the structure of the complex of Torpedo californica acetylcholinesterase with fasciculin-II and verified by starting from a similar complex with mouse acetylcholinesterase. The overall structure is surprisingly similar to that of the T. californica enzyme with fasciculin-II and, as expected, to that of the mouse acetylcholinesterase complex. The structure of the E202Q mutant complex was refined starting from the corresponding wild-type human acetylcholinesterase structure, using the 2.7 A resolution data set collected. Comparison of the two structures shows that removal of the charged group from the protein core and its substitution by a neutral isosteric moiety does not disrupt the functional architecture of the active centre. One of the elements of this architecture is thought to be a hydrogen-bond network including residues Glu202, Glu450, Tyr133 and two bridging molecules of water, which is conserved in other vertebrate acetylcholinesterases as well as in the human enzyme. The present findings are consistent with the notion that the main role of this network is the proper positioning of the Glu202 carboxylate relative to the catalytic triad, thus defining its functional role in the interaction of acetylcholinesterase with substrates and inhibitors.

308 citations

Journal ArticleDOI
TL;DR: The active sites of aged sarin- and soman-TcAChE were essentially identical and provided structural models for the negatively charged, tetrahedral intermediate that occurs during deacylation with the natural substrate, acetylcholine.
Abstract: Organophosphorus acid anhydride (OP) nerve agents are potent inhibitors which rapidly phosphonylate acetylcholinesterase (AChE) and then may undergo an internal dealkylation reaction (called “aging”) to produce an OP-enzyme conjugate that cannot be reactivated. To understand the basis for irreversible inhibition, we solved the structures of aged conjugates obtained by reaction of Torpedo californica AChE (TcAChE) with diisopropylphosphorofluoridate (DFP), O-isopropylmethylphosponofluoridate (sarin), or O-pinacolylmethylphosphonofluoridate (soman) by X-ray crystallography to 2.3, 2.6, or 2.2 A resolution, respectively. The highest positive difference density peak corresponded to the OP phosphorus and was located within covalent bonding distance of the active-site serine (S200) in each structure. The OP-oxygen atoms were within hydrogen-bonding distance of four potential donors from catalytic subsites of the enzyme, suggesting that electrostatic forces significantly stabilize the aged enzyme. The active sit...

265 citations

Journal ArticleDOI
TL;DR: Results clearly demonstrate that neutralizing antibodies to PA constitute a major component of the protective immunity against anthrax and suggest that this parameter could be used as a surrogate marker for protection.
Abstract: Vaccination by anthrax protective antigen (PA)-based vaccines requires multiple immunization, underlying the need to develop more efficacious vaccines or alternative vaccination regimens. In spite of the vast use of PA-based vaccines, the definition of a marker for protective immunity is still lacking. Here we describe studies designed to help define such markers. To this end we have immunized guinea pigs by different methods and monitored the immune response and the corresponding extent of protection against a lethal challenge with anthrax spores. Active immunization was performed by a single injection using one of two methods: (i) vaccination with decreasing amounts of PA and (ii) vaccination with constant amounts of PA that had been thermally inactivated for increasing periods. In both studies a direct correlation between survival and neutralizing-antibody titer was found (r2 = 0.92 and 0.95, respectively). Most significantly, in the two protocols a similar neutralizing-antibody titer range provided 50% protection. Furthermore, in a complementary study involving passive transfer of PA hyperimmune sera to naive animals, a similar correlation between neutralizing-antibody titers and protection was found. In all three immunization studies, neutralization titers of at least 300 were sufficient to confer protection against a dose of 40 50% lethal doses (LD50) of virulent anthrax spores of the Vollum strain. Such consistency in the correlation of protective immunity with anti-PA antibody titers was not observed for antibody titers determined by an enzyme-linked immunosorbent assay. Taken together, these results clearly demonstrate that neutralizing antibodies to PA constitute a major component of the protective immunity against anthrax and suggest that this parameter could be used as a surrogate marker for protection.

233 citations

Journal ArticleDOI
TL;DR: It is proposed that binding of acetylcholine, on the surface of AChE, may trigger sequence of conformational changes extending from the peripheral anionic site through W286 to D74, at the entrance of the ‘gorge’, and down to the catalytic center (through Y341 to F338 and Y337).
Abstract: Amino acids located within and around the 'active site gorge' of human acetylcholinesterase (AChE) were substituted. Replacement of W86 yielded inactive enzyme molecules, consistent with its proposed involvement in binding of the choline moiety in the active center. A decrease in affinity to propidium and a concomitant loss of substrate inhibition was observed in D74G, D74N, D74K and W286A mutants, supporting the idea that the site for substrate inhibition and the peripheral anionic site overlap. Mutations of amino acids neighboring the active center (E202, Y337 and F338) resulted in a decrease in the catalytic and the apparent bimolecular rate constants. A decrease in affinity to edrophonium was observed in D74, E202, Y337 and to a lesser extent in F338 and Y341 mutants. E202, Y337 and Y341 mutants were not inhibited efficiently by high substrate concentrations. We propose that binding of acetylcholine, on the surface of AChE, may trigger sequence of conformational changes extending from the peripheral anionic site through W286 to D74, at the entrance of the 'gorge', and down to the catalytic center (through Y341 to F338 and Y337). These changes, especially in Y337, could block the entrance/exit of the catalytic center and reduce the catalytic efficiency of AChE.

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article corrects the article on p. 496 in vol.

1,986 citations

Journal ArticleDOI
TL;DR: An overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning.
Abstract: Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.

1,660 citations

Journal ArticleDOI
TL;DR: This paper attempts to summarize current knowledge about immune responses to vaccines that correlate with protection, finding some vaccines have no true correlates, but only useful surrogates, for an unknown protective response.
Abstract: This paper attempts to summarize current knowledge about immune responses to vaccines that correlate with protection. Although the immune system is redundant, almost all current vaccines work through antibodies in serum or on mucosa that block infection or bacteremia/viremia and thus provide a correlate of protection. The functional characteristics of antibodies, as well as quantity, are important. Antibody may be highly correlated with protection or synergistic with other functions. Immune memory is a critical correlate: effector memory for short-incubation diseases and central memory for long-incubation diseases. Cellular immunity acts to kill or suppress intracellular pathogens and may also synergize with antibody. For some vaccines, we have no true correlates, but only useful surrogates, for an unknown protective response.

1,350 citations

Journal ArticleDOI
TL;DR: The time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions, as well as some of the long-suspected 'non-classical' actions of this enzyme, which have more recently driven a profound revolution in research.
Abstract: The discovery of the first neurotransmitter — acetylcholine — was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.

1,216 citations