scispace - formally typeset
Search or ask a question
Author

Avinash C. Kak

Other affiliations: Infosys
Bio: Avinash C. Kak is an academic researcher from Purdue University. The author has contributed to research in topics: Mobile robot & Video tracking. The author has an hindex of 51, co-authored 254 publications receiving 25027 citations. Previous affiliations of Avinash C. Kak include Infosys.


Papers
More filters
Book
01 Jan 1987
TL;DR: Properties of Computerized Tomographic Imaging provides a tutorial overview of topics in tomographic imaging covering mathematical principles and theory and how to apply the theory to problems in medical imaging and other fields.
Abstract: Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions. The impact of tomography in diagnostic medicine has been revolutionary, since it has enabled doctors to view internal organs with unprecedented precision and safety to the patient. There are also numerous nonmedical imaging applications which lend themselves to methods of computerized tomography, such as mapping of underground resources...cross-sectional imaging of for nondestructive testing...the determination of the brightness distribution over a celestial sphere...three-dimensional imaging with electron microscopy. Principles of Computerized Tomographic Imaging provides a tutorial overview of topics in tomographic imaging covering mathematical principles and theory...how to apply the theory to problems in medical imaging and other fields...several variations of tomography that are currently being researched.

5,620 citations

Book
01 Jan 1976
TL;DR: The rapid rate at which the field of digital picture processing has grown in the past five years had necessitated extensive revisions and the introduction of topics not found in the original edition.
Abstract: The rapid rate at which the field of digital picture processing has grown in the past five years had necessitated extensive revisions and the introduction of topics not found in the original edition.

4,231 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that when the training data set is small, PCA can outperform LDA and, also, that PCA is less sensitive to different training data sets.
Abstract: In the context of the appearance-based paradigm for object recognition, it is generally believed that algorithms based on LDA (linear discriminant analysis) are superior to those based on PCA (principal components analysis). In this communication, we show that this is not always the case. We present our case first by using intuitively plausible arguments and, then, by showing actual results on a face database. Our overall conclusion is that when the training data set is small, PCA can outperform LDA and, also, that PCA is less sensitive to different training data sets.

3,102 citations

Journal ArticleDOI
TL;DR: This implementation of the Algebraic Reconstruction Technique appears to have a computational advantage over the more traditional implementation of ART and potential applications include image reconstruction in conjunction with ray tracing for ultrasound and microwave tomography.

1,539 citations

Journal ArticleDOI
TL;DR: The developments of the last 20 years in the area of vision for mobile robot navigation are surveyed and the cases of navigation using optical flows, using methods from the appearance-based paradigm, and by recognition of specific objects in the environment are discussed.
Abstract: Surveys the developments of the last 20 years in the area of vision for mobile robot navigation. Two major components of the paper deal with indoor navigation and outdoor navigation. For each component, we have further subdivided our treatment of the subject on the basis of structured and unstructured environments. For indoor robots in structured environments, we have dealt separately with the cases of geometrical and topological models of space. For unstructured environments, we have discussed the cases of navigation using optical flows, using methods from the appearance-based paradigm, and by recognition of specific objects in the environment.

1,386 citations


Cited by
More filters
Journal ArticleDOI
Paul J. Besl1, H.D. McKay1
TL;DR: In this paper, the authors describe a general-purpose representation-independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

17,598 citations

Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.
Abstract: We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixel-to-pixel correlations are first removed by subtracting a lowpass filtered copy of the image from the image itself. The result is a net data compression since the difference, or error, image has low variance and entropy, and the low-pass filtered image may represented at reduced sample density. Further data compression is achieved by quantizing the difference image. These steps are then repeated to compress the low-pass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus, the code tends to enhance salient image features. A further advantage of the present code is that it is well suited for many image analysis tasks as well as for image compression. Fast algorithms are described for coding and decoding.

6,975 citations

Journal ArticleDOI
TL;DR: The theory of edge detection explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround ∇2G filters acting on the image forms the basis for a physiological model of simple cells.
Abstract: A theory of edge detection is presented. The analysis proceeds in two parts. (1) Intensity changes, which occur in a natural image over a wide range of scales, are detected separately at different scales. An appropriate filter for this purpose at a given scale is found to be the second derivative of a Gaussian, and it is shown that, provided some simple conditions are satisfied, these primary filters need not be orientation-dependent. Thus, intensity changes at a given scale are best detected by finding the zero values of delta 2G(x,y)*I(x,y) for image I, where G(x,y) is a two-dimensional Gaussian distribution and delta 2 is the Laplacian. The intensity changes thus discovered in each of the channels are then represented by oriented primitives called zero-crossing segments, and evidence is given that this representation is complete. (2) Intensity changes in images arise from surface discontinuities or from reflectance or illumination boundaries, and these all have the property that they are spatially. Because of this, the zero-crossing segments from the different channels are not independent, and rules are deduced for combining them into a description of the image. This description is called the raw primal sketch. The theory explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround delta 2G filters acting on the image forms the basis for a physiological model of simple cells (see Marr & Ullman 1979).

6,893 citations