scispace - formally typeset
Search or ask a question
Author

Avinash Kumar Agarwal

Bio: Avinash Kumar Agarwal is an academic researcher from Indian Institute of Technology Kanpur. The author has contributed to research in topics: Diesel fuel & Combustion. The author has an hindex of 53, co-authored 422 publications receiving 14279 citations. Previous affiliations of Avinash Kumar Agarwal include University of Wisconsin-Madison & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the production, characterization and current statuses of vegetable oil and biodiesel as well as the experimental research work carried out in various countries is presented.

2,891 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of reducing Jatropha oil's viscosity by increasing the fuel temperature (using waste heat of the exhaust gases) and thereby eliminating its effect on combustion and emission characteristics of the engine was investigated.

611 citations

Journal ArticleDOI
TL;DR: In this article, a series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification.
Abstract: Neat vegetable oils pose some problems when subjected to prolonged usage in CI engine. These problems are attributed to high viscosity, low volatility and polyunsaturated character of the neat vegetable oils. These problems are reduced to minimum by subjecting the vegetable oils to the process of transesterification. Various properties of the biodiesel thus developed are evaluated and compared in relation to that of conventional diesel oil. These tests for biodiesel and diesel oil include density, viscosity, flash point, aniline point/cetane number, calorific value, etc. The prepared biodiesel was then subjected to performance and emission tests in order to evaluate its actual performance, when used as a diesel engine fuel. The data generated for various concentrations of biodiesel blends were compared with base line data generated for neat diesel oil. It was found that 20 percent blend of biodiesel gave the best performance amongst all blends. It gave net advantage of 2.5 percent in peak thermal efficiency and there was substantial reduction in smoke opacity values. This blend was chosen for long term endurance test. The engine operating on optimum biodiesel blend showed substantially improved behavior. A series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification.

578 citations

Journal ArticleDOI
TL;DR: In this article, an experimental investigation has been carried out to analyze the performance and emission characteristics of a compression ignition engine fuelled with Karanja oil and its blends (10, 20, 50% and 75%) vis-a-vis mineral diesel.

468 citations

Journal ArticleDOI
01 Sep 2013-Fuel
TL;DR: In this paper, a single cylinder research engine was used to experimentally determine the effects of fuel injection strategies and injection timings on engine combustion, performance and emission characteristics, and the experiments were conducted at constant speed (2500-rpm) with two FIPs (500 and 1000 bars respectively) and different start of injection (SOI) timings.

366 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the production, characterization and current statuses of vegetable oil and biodiesel as well as the experimental research work carried out in various countries is presented.

2,891 citations

Book ChapterDOI
01 Jan 1982
TL;DR: In this article, the authors discuss leading problems linked to energy that the world is now confronting and propose some ideas concerning possible solutions, and conclude that it is necessary to pursue actively the development of coal, natural gas, and nuclear power.
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

2,283 citations

Journal ArticleDOI
TL;DR: In this paper, structural features that influence the physical and fuel properties of a fatty ester molecule are chain length, degree of unsaturation, and branching of the chain, as well as the structural features of the fatty acid and the alcohol moieties.

2,145 citations

Journal ArticleDOI
TL;DR: An up-to-date review of the literature available on the subject of liquid bio-fuels can be found in this article, which includes information based on the research conducted globally by scientists according to their local socio-cultural and economic situations.

1,948 citations

Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations