scispace - formally typeset
Search or ask a question
Author

Avinoam Kolodny

Bio: Avinoam Kolodny is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Network on a chip & System on a chip. The author has an hindex of 34, co-authored 166 publications receiving 6202 citations. Previous affiliations of Avinoam Kolodny include Intel & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the proposed TEAM, ThrEshold Adaptive Memristor model is reasonably accurate and computationally efficient, and is more appropriate for circuit simulation than previously published models.
Abstract: Memristive devices are novel devices, which can be used in applications ranging from memory and logic to neuromorphic systems. A memristive device offers several advantages: nonvolatility, good scalability, effectively no leakage current, and compatibility with CMOS technology, both electrically and in terms of manufacturing. Several models for memristive devices have been developed and are discussed in this paper. Digital applications such as memory and logic require a model that is highly nonlinear, simple for calculations, and sufficiently accurate. In this paper, a new memristive device model is presented-TEAM, ThrEshold Adaptive Memristor model. This model is flexible and can be fit to any practical memristive device. Previously published models are compared in this paper to the proposed TEAM model. It is shown that the proposed model is reasonably accurate and computationally efficient, and is more appropriate for circuit simulation than previously published models.

666 citations

Journal ArticleDOI
TL;DR: A customized Quality-of-Service NoC (QNoC) architecture is derived by modifying a generic network architecture which minimizes the network cost while maintaining the required QoS.

641 citations

Journal ArticleDOI
TL;DR: In this brief, a memristor-only logic family, i.e., memristar-aided logic (MAGIC), is presented, and in each MAGIC logic gate, memristors serve as an input with previously stored data, and an additional Memristor serves as an output.
Abstract: Memristors are passive components with a varying resistance that depends on the previous voltage applied across the device. While memristors are naturally used as memory, memristors can also be used for other applications, including logic circuits. In this brief, a memristor-only logic family, i.e., memristor-aided logic (MAGIC), is presented. In each MAGIC logic gate, memristors serve as an input with previously stored data, and an additional memristor serves as an output. The topology of a MAGIC nor gate is similar to the structure of a common memristor-based crossbar memory array. A MAGIC nor gate can therefore be placed within memory, providing opportunities for novel non-von Neumann computer architectures. Other MAGIC gates also exist (e.g., and , or , not , and nand ) and are described in this brief.

617 citations

Journal ArticleDOI
TL;DR: The VTEAM model extends the previously proposed ThrEshold Adaptive Memristor (TEAM) model, which describes current-controlled memristors and has similar advantages as the TEAM model, i.e., it is simple, general, and flexible, and can characterize different voltage-controlled Memristors.
Abstract: Memristors are novel electrical devices used for a variety of applications, including memory, logic circuits, and neuromorphic systems. Memristive technologies are attractive due to their nonvolatility, scalability, and compatibility with CMOS. Numerous physical experiments have shown the existence of a threshold voltage in some physical memristors. Additionally, as shown in this brief, some applications require voltage-controlled memristors to operate properly. In this brief, a Voltage ThrEshold Adaptive Memristor (VTEAM) model is proposed to describe the behavior of voltage-controlled memristors. The VTEAM model extends the previously proposed ThrEshold Adaptive Memristor (TEAM) model, which describes current-controlled memristors. The VTEAM model has similar advantages as the TEAM model, i.e., it is simple, general, and flexible, and can characterize different voltage-controlled memristors. The VTEAM model is accurate (below 1.5% in terms of the relative root-mean-square error) and computationally efficient as compared with existing memristor models and experimental results describing different memristive technologies.

564 citations

Journal ArticleDOI
TL;DR: The IMPLY logic gate, a memristor-based logic circuit, is described and a methodology for designing this logic family is proposed, based on a general design flow suitable for all deterministic memristive logic families.
Abstract: Memristors are novel devices, useful as memory at all hierarchies. These devices can also behave as logic circuits. In this paper, the IMPLY logic gate, a memristor-based logic circuit, is described. In this memristive logic family, each memristor is used as an input, output, computational logic element, and latch in different stages of the computing process. The logical state is determined by the resistance of the memristor. This logic family can be integrated within a memristor-based crossbar, commonly used for memory. In this paper, a methodology for designing this logic family is proposed. The design methodology is based on a general design flow, suitable for all deterministic memristive logic families, and includes some additional design constraints to support the IMPLY logic family. An IMPLY 8-bit full adder based on this design methodology is presented as a case study.

526 citations


Cited by
More filters
Posted Content
TL;DR: A binary matrix multiplication GPU kernel is written with which it is possible to run the MNIST BNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy.
Abstract: We introduce a method to train Binarized Neural Networks (BNNs) - neural networks with binary weights and activations at run-time. At training-time the binary weights and activations are used for computing the parameters gradients. During the forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations, which is expected to substantially improve power-efficiency. To validate the effectiveness of BNNs we conduct two sets of experiments on the Torch7 and Theano frameworks. On both, BNNs achieved nearly state-of-the-art results over the MNIST, CIFAR-10 and SVHN datasets. Last but not least, we wrote a binary matrix multiplication GPU kernel with which it is possible to run our MNIST BNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The code for training and running our BNNs is available on-line.

2,320 citations

Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations

Journal ArticleDOI
TL;DR: The research shows that NoC constitutes a unification of current trends of intrachip communication rather than an explicit new alternative.
Abstract: The scaling of microchip technologies has enabled large scale systems-on-chip (SoC). Network-on-chip (NoC) research addresses global communication in SoC, involving (i) a move from computation-centric to communication-centric design and (ii) the implementation of scalable communication structures. This survey presents a perspective on existing NoC research. We define the following abstractions: system, network adapter, network, and link to explain and structure the fundamental concepts. First, research relating to the actual network design is reviewed. Then system level design and modeling are discussed. We also evaluate performance analysis techniques. The research shows that NoC constitutes a unification of current trends of intrachip communication rather than an explicit new alternative.

1,720 citations

Journal ArticleDOI
TL;DR: A comprehensive study that projects the speedup potential of future multicores and examines the underutilization of integration capacity-dark silicon-is timely and crucial.
Abstract: A key question for the microprocessor research and design community is whether scaling multicores will provide the performance and value needed to scale down many more technology generations. To provide a quantitative answer to this question, a comprehensive study that projects the speedup potential of future multicores and examines the underutilization of integration capacity-dark silicon-is timely and crucial.

1,556 citations