scispace - formally typeset
Search or ask a question
Author

Aviram Ronen

Bio: Aviram Ronen is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Reciprocating motion & Reynolds equation. The author has an hindex of 1, co-authored 1 publications receiving 439 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model is presented to study the potential use of micro-surface structure in the form of micro pores to improve tribological properties of reciprocating automotive components, where the Reynolds equation and the equation of motion are solved simultaneously for a simplified “piston/cylinder” system with surface texturing.
Abstract: A model is presented to study the potential use of micro-surface structure in the form of micro pores to improve tribological properties of reciprocating automotive components. The Reynolds equation and the equation of motion are solved simultaneously for a simplified “piston/cylinder” system with surface texturing. The solution provides the time behavior of both the clearance and the friction force between the “piston ring” and “cylinder liner” surfaces. It is shown that surface texturing can efficiently be used to maintain hydrodynamic effects even with nominally parallel surfaces. It is also shown that optimum surface texturing may substantially reduce the friction losses in reciprocating automotive components. Presented at the 56th Annual Meeting Orlando, Florida May 20–24, 2001

472 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the state of the art in LST and the potential of this technology in various lubricated applications like mechanical seals, piston rings and thrust bearings.
Abstract: Surface texturing has emerged in the last decade as a viable option of surface engineering resulting in significant improvement in load capacity, wear resistance, friction coefficient etc. of tribological mechanical components. Various techniques can be employed for surface texturing but Laser Surface Texturing (LST) is probably the most advanced so far. LST produces a very large number of micro-dimples on the surface and each of these micro-dimples can serve either as a micro-hydrodynamic bearing in cases of full or mixed lubrication, a micro-reservoir for lubricant in cases of starved lubrication conditions, or a micro-trap for wear debris in either lubricated or dry sliding. The present paper reviews the current effort being made world wide on surface texturing in general and on laser surface texturing in particular. It presents the state of the art in LST and the potential of this technology in various lubricated applications like mechanical seals, piston rings and thrust bearings. The paper also describes some fundamental on going research around the world with LST.

1,123 citations

Proceedings ArticleDOI
01 Jan 2004-Volume!
TL;DR: Laser Surface Texturing (LST) is probably the most advanced surface texturing technique as mentioned in this paper and it produces a very large number of micro-dimples on the surface and each of these microdimples can serve either as a micro-hydrodynamic bearing in cases of full or mixed lubrication.
Abstract: Surface texturing has emerged in the last decade as a viable option of surface engineering resulting in significant improvement in load capacity, wear resistance, friction coefficient etc. of tribological mechanical components. Various techniques can be employed for surface texturing but Laser Surface Texturing (LST) is probably the most advanced so far. LST produces a very large number of micro-dimples on the surface and each of these micro- dimples can serve either as a micro-hydrodynamic bearing in cases of full or mixed lubrication, a micro-reservoir for lubricant in cases of starved lubrication conditions, or a micro-trap for wear debris in either lubricated or dry sliding. The paper reviews the current effort being made world wide on laser surface texturing in particular. It presents the state of the art in LST and the potential of this technology in various lubricated applications like mechanical seals, piston rings, thrust bearings, magnetic recording etc. The paper also describes some fundamental on-going research around the world with LST.

914 citations

Journal ArticleDOI
01 Feb 2003-Wear
TL;DR: In this article, the effect of micro-dimples on the frictional properties of a silicon nitride ceramic mated with hardened steel was investigated and it was found that the porosity depended greatly on the size and density of the microdimples, whilst the dimple shape did not significantly affect the friction coefficient regardless of rounded or angular profiles.

640 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the advances in the state of the art considering the relationships between the properties of functional surfaces, their applications and the technologies to engineer surfaces, and their applications in many advanced fields, such as: electronics, information technology, energy, optics, tribology, biology and biomimetics.

593 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comparative summary of different modeling techniques for fluid flow, cavitation and micro-hydrodynamic effects for surface texturing, and provide the key findings.

590 citations