scispace - formally typeset
Search or ask a question
Author

Axel Klar

Bio: Axel Klar is an academic researcher from Kaiserslautern University of Technology. The author has contributed to research in topics: Boltzmann equation & Traffic flow. The author has an hindex of 42, co-authored 255 publications receiving 5812 citations. Previous affiliations of Axel Klar include Fraunhofer Institute for Industrial Mathematics & Technische Universität Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors apply the asymptotic analysis directly to the fully discrete Boltzmann equation, as opposed to the usual practice of analyzing a continuous equation obtained through the Taylor-expansion of the LBE.

369 citations

Journal ArticleDOI
TL;DR: It is shown rigorously that, at least in the homogeneous case, the macroscopic model can be viewed as the limit of the time discretization of the microscopic model as the number of vehicles increases, with a scaling in space and time.
Abstract: In this paper we establish a connection between a microscopic follow-the-leader model based on ordinary differential equations and a semidiscretization of a macroscopic continuum model based on a c...

281 citations

Journal ArticleDOI
TL;DR: A method to obtain solutions to the gas network problem is given and numerical results for sample networks are presented.
Abstract: We introduce a model for gas flow in pipeline networks based on the isothermal Euler equations. We model the intersection of multiple pipes by posing an additional assumption on the pressure at the interface. We give a method to obtain solutions to the gas network problem and present numerical results for sample networks.

199 citations

Journal ArticleDOI
TL;DR: In this paper, an asymptotic-induced scheme for nonstationary transport equations with the diffusion scaling is developed, which works uniformly for all ranges of mean-free paths.
Abstract: An asymptotic-induced scheme for nonstationary transport equations with the diffusion scaling is developed. The scheme works uniformly for all ranges of mean-free paths. It is based on the asymptotic analysis of the diffusion limit of the transport equation. A theoretical investigation of the behavior of the scheme in the diffusion limit is given and an approximation property is proven. Moreover, numerical results for different physical situations are shown and the uniform convergence of the scheme is established numerically.

171 citations

Journal ArticleDOI
TL;DR: Coupling conditions for gas transport in networks where the governing equations are the isothermal Euler equations are investigated and additional assumptions to obtain a solution near the intersection are introduced.
Abstract: We investigate coupling conditions for gas transport in networks where the governing equations are the isothermal Euler equations. We discuss intersections of pipes by considering solutions to Riemann problems. We introduce additional assumptions to obtain a solution near the intersection and we present numerical results for sample networks.

169 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic, including microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models.
Abstract: Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

3,117 citations

Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations

Journal ArticleDOI
TL;DR: This work reviews many significant developments over the past decade of the lattice-Boltzmann method and discusses higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number.
Abstract: With its roots in kinetic theory and the cellular automaton concept, the lattice-Boltzmann (LB) equation can be used to obtain continuum flow quantities from simple and local update rules based on particle interactions. The simplicity of formulation and its versatility explain the rapid expansion of the LB method to applications in complex and multiscale flows. We review many significant developments over the past decade with specific examples. Some of the most active developments include the entropic LB method and the application of the LB method to turbulent flow, multiphase flow, and deformable particle and fiber suspensions. Hybrid methods based on the combination of the Eulerian lattice with a Lagrangian grid system for the simulation of moving deformable boundaries show promise for more efficient applications to a broader class of problems. We also discuss higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number. Additionally, the remarkable scalability of the LB method for parallel processing is shown with examples. Teraflop simulations with the LB method are routine, and there is no doubt that this method will be one of the first candidates for petaflop computational fluid dynamics in the near future.

1,585 citations

BookDOI
TL;DR: In this paper, the authors provide an introduction to lattice gas cellular automata (LGCA) and lattice Boltzmann models (LBM) for numerical solution of nonlinear partial differential equations.
Abstract: Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new andpromising methods for the numerical solution of nonlinear partial differential equations. The bookprovides an introduction for graduate students and researchers. Working knowledge of calculus isrequired and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellularautomata are outlined in Chapter 2. The properties of various LGCA and special coding techniquesare discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessarytheoretical background for LGCA and LBM. The properties of lattice Boltzmann models and amethod for their construction are presented in Chapter 5.

1,543 citations