scispace - formally typeset
Search or ask a question
Author

Ayan Roy

Bio: Ayan Roy is an academic researcher from Lovely Professional University. The author has contributed to research in topics: Codon usage bias & Biology. The author has an hindex of 10, co-authored 38 publications receiving 285 citations. Previous affiliations of Ayan Roy include University of Calcutta & University of KwaZulu-Natal.

Papers
More filters
Journal ArticleDOI
TL;DR: The present results promise to provide new avenues to further evaluate the potential of the phytocompound taraxerol in vitro and in vivo towards its successful deployment as a SARS-CoV-2 inhibitor and combat the catastrophic COVID-19.
Abstract: The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has rattled global public health, with researchers struggling to find specific therapeutic solutions In this context, the present s

53 citations

Journal ArticleDOI
TL;DR: This review provides recent advances in the anti-inflammatory and antiviral activities of biosurfactants and discusses the potential use of these compounds against COVID-19, highlighting the need for in-vitro and in- vivo approaches to confirm this hypothesis.

42 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the impact of environment due to improper disposal of these personal protective measures and investigate the safe disposal methods for these protective measures by using the safe, secure and innovative biological methods such as the use of Artificial Intelligence (AI) and Ultraviolet (UV) lights for killing such deadly viruses.

40 citations

Journal ArticleDOI
TL;DR: Estimation of physicochemical properties and potential toxicity of the metabolites followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function established deoxycylindrospermopsin as the most promising inhibitory candidate against both SARS-CoV-2 proteases.
Abstract: A novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has emerged as the causative agent behind the coronavirus disease 2019 (COVID-19) pandemic. Treatment efforts have been severely impeded due to the lack of specific effective antiviral drugs for the treatment of COVID-associated pathologies. In the present research endeavour the inhibitory prospects of cyanobacterial metabolites were assessed at the active binding pockets of the two vital SARS-CoV-2 proteases namely, main protease (Mpro) and the papain-like protease (PLpro) that proteolytically process viral polyproteins and facilitate viral replication, employing an in silico molecular interaction-based approach. It was evident from our analysis based on the binding energy scores that the metabolites cylindrospermopsin, deoxycylindrospermopsin, carrageenan, cryptophycin 52, eucapsitrione, tjipanazole, tolyporphin and apratoxin A exhibited promising inhibitory potential against the SARS-CoV-2 Mpro. The compounds cryptophycin 1, cryptophycin 52 and deoxycylindrospermopsin were observed to display encouraging binding energy scores with the PLpro of SARS-CoV-2. Subsequent estimation of physicochemical properties and potential toxicity of the metabolites followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function established deoxycylindrospermopsin as the most promising inhibitory candidate against both SARS-CoV-2 proteases. Present research findings bestow ample scopes to further exploit the potential of deoxycylindrospermopsin as a successful inhibitor of SARS-CoV-2 in vitro and in vivo and pave the foundation for the development of novel effective therapeutics against COVID-19.Communicated by Ramaswamy H. Sarma.

39 citations

Journal ArticleDOI
TL;DR: This study clearly suggests that strong purifying selection is responsible for the evolution of the novel influenza A (H1N1) virus among human and observes that the 2009 viral sequences are evolutionarily widely different from the past few years' sequences.

36 citations


Cited by
More filters
01 Feb 2009

911 citations

Journal ArticleDOI
TL;DR: The TTC principle can be applied for low concentrations in food of chemicals that lack toxicity data, provided that there is a sound intake estimate, and the use of a decision tree to apply the TTC principle is proposed.
Abstract: The threshold of toxicological concern (TTC) is a pragmatic risk assessment tool that is based on the principle of establishing a human exposure threshold value for all chemicals, below which there is a very low probability of an appreciable risk to human health. The concept that there are levels of exposure that do not cause adverse effects is inherent in setting acceptable daily intakes (ADIs) for chemicals with known toxicological profiles. The TTC principle extends this concept by proposing that a de minimis value can be identified for many chemicals, in the absence of a full toxicity database, based on their chemical structures and the known toxicity of chemicals which share similar structural characteristics. The establishment and application of widely accepted TTC values would benefit consumers, industry and regulators. By avoiding unnecessary toxicity testing and safety evaluations when human intakes are below such a threshold, application of the TTC approach would focus limited resources of time, cost, animal use and expertise on the testing and evaluation of substances with the greatest potential to pose risks to human health and thereby contribute to a reduction in the use of animals. An Expert Group of the European branch of the International Life Sciences Institute-ILSI Europe-has examined the TTC principle for its wider applicability in food safety evaluation. The Expert Group examined metabolism and accumulation, structural alerts, endocrine disrupting chemicals and specific endpoints, such as neurotoxicity, teratogenicity, developmental toxicity, allergenicity and immunotoxicity, and determined whether such properties or endpoints had to be taken into consideration specifically in a step-wise approach. The Expert Group concluded that the TTC principle can be applied for low concentrations in food of chemicals that lack toxicity data, provided that there is a sound intake estimate. The use of a decision tree to apply the TTC principle is proposed, and this paper describes the step-wise process in detail. Proteins, heavy metals and polyhalogenated-dibenzodioxins and related compounds were excluded from this approach. When assessing a chemical, a review of prior knowledge and context of use should always precede the use of the TTC decision tree. The initial step is the identification and evaluation of possible genotoxic and/or high potency carcinogens. Following this step, non-genotoxic substances are evaluated in a sequence of steps related to the concerns that would be associated with increasing intakes. For organophosphates a TTC of 18microg per person per day (0.3 microg/kg bw/day) is proposed, and when the compound is not an OP, the TTC values for the Cramer structural classes III, II and I, with their respective TTC levels (e.g. 1800, 540 and 90 microg per person per day; or 30, 9 and 1.5 microg/kg bw /day), would be applied sequentially. All other endpoints or properties were shown to have a distribution of no observed effect levels (NOELs) similar to the distribution of NOELs for general toxicity endpoints in Cramer classes I, II and III. The document was discussed with a wider audience during a workshop held in March 2003 (see list of workshop participants).

378 citations

Journal ArticleDOI
TL;DR: The combination of three known drugs, lopinavir, oseltamivir and ritonavir has been proposed to control the virulence to a great extent in COVID-19 affected patients within 48 hours and showed a better binding energy than that of individual drugs.
Abstract: A novel coronavirus, formally named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused coronavirus disease 2019 (COVID-19) worldwide, and it is the latest pandemic in the se...

331 citations

Journal ArticleDOI
TL;DR: A review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications is provided.
Abstract: Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.

120 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the bio-factant.
Abstract: The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.

102 citations