scispace - formally typeset
Search or ask a question
Author

Ayesha Fatima

Bio: Ayesha Fatima is an academic researcher from International University, Cambodia. The author has contributed to research in topics: Medicine & Microbiology. The author has an hindex of 6, co-authored 10 publications receiving 102 citations. Previous affiliations of Ayesha Fatima include Bezmialem Foundation University & UCSI University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of antibiotic resistance strategies produced by multidrug-resistant bacteria and phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics is presented.
Abstract: Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.

48 citations

Journal ArticleDOI
TL;DR: The cDNA of this new member of Lignosus rhinocerotis is reported with a homology range of 54–64% to FIPs from other mushroom species, the closest is with FIP-glu (LZ-8) (64%) from Ganoderma lucidum, and has a relatively hydrophobic N-terminal.
Abstract: Lignosus rhinocerotis (Tiger milk mushroom) is an important folk medicine for indigenous peoples in Southeast Asia. We previously reported its de novo assembled 34.3 Mb genome encoding a repertoire of proteins including a putative bioactive fungal immunomodulatory protein. Here we report the cDNA of this new member (FIP-Lrh) with a homology range of 54–64% to FIPs from other mushroom species, the closest is with FIP-glu (LZ-8) (64%) from Ganoderma lucidum. The FIP-Lrh of 112 amino acids (12.59 kDa) has a relatively hydrophobic N-terminal. Its predicted 3-dimensional model has identical folding patterns to FIP-fve and contains a partially conserved and more positively charged carbohydrates binding pocket. Docking predictions of FIP-Lrh on 14 glycans commonly found on cellular surfaces showed the best binding energy of −3.98 kcal/mol to N-acetylgalactosamine and N-acetylglucosamine. Overexpression of a 14.9 kDa soluble 6xHisFIP-Lrh was achieved in pET-28a(+)/BL21 and the purified recombinant protein was sequence verified by LC-MS/MS (QTOF) analysis. The ability to haemagglutinate both mouse and human blood at concentration ≥0.34 μM, further demonstrated its lectin nature. In addition, the cytotoxic effect of 6xHisFIP-Lrh on MCF-7, HeLa and A549 cancer cell lines was detected at IC50 of 0.34 μM, 0.58 μM and 0.60 μM, respectively.

33 citations

Journal ArticleDOI
TL;DR: Evidence is provided that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent and in silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin.
Abstract: Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.

31 citations

Journal ArticleDOI
TL;DR: Investigation of bee products for potential compound(s) that exhibit significant QS inhibitory properties at the phenotypic and molecular levels in Chromobacterium violaceum ATCC 12472 as a model organism suggests isoprenyl caffeate may act as an inhibitor of the violacein biosynthetic pathway by acting as a competitor for the FAD-binding pockets of VioD and VioA.
Abstract: The emergence of antibiotic-resistant bacterial pathogens, especially Gram-negative bacteria, has driven investigations into suppressing bacterial virulence via quorum sensing (QS) inhibition strategies instead of bactericidal and bacteriostatic approaches. Here, we investigated several bee products for potential compound(s) that exhibit significant QS inhibitory (QSI) properties at the phenotypic and molecular levels in Chromobacterium violaceum ATCC 12472 as a model organism. Manuka propolis produced the strongest violacein inhibition on C. violaceum lawn agar, while bee pollen had no detectable QSI activity and honey had bactericidal activity. Fractionated manuka propolis (pooled fraction 5 or PF5) exhibited the largest violacein inhibition zone (24.5 ± 2.5 mm) at 1 mg dry weight per disc. In C. violaceum liquid cultures, at least 450 µg/ml of manuka propolis PF5 completely inhibited violacein production. Gene expression studies of the vioABCDE operon, involved in violacein biosynthesis, showed significant (≥two-fold) down-regulation of vioA, vioD and vioE in response to manuka propolis PF5. A potential QSI compound identified in manuka propolis PF5 is a hydroxycinnamic acid-derivative, isoprenyl caffeate, with a [M−H] of 247. Complete violacein inhibition in C. violaceum liquid cultures was achieved with at least 50 µg/ml of commercial isoprenyl caffeate. In silico docking experiments suggest that isoprenyl caffeate may act as an inhibitor of the violacein biosynthetic pathway by acting as a competitor for the FAD-binding pockets of VioD and VioA. Further studies on these compounds are warranted toward the development of anti-pathogenic drugs as adjuvants to conventional antibiotic treatments, especially in antibiotic-resistant bacterial infections.

28 citations

Journal ArticleDOI
TL;DR: The results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins.
Abstract: Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses.
Abstract: COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.

118 citations

Journal ArticleDOI
TL;DR: These studies show that honey is effectively a nutraceutical foodstuff and that the honey’s biological activity is mainly dependent on its floral or geographic origin.
Abstract: The beneficial effects of honey on human health have long been recognized. Today, many of those positive effects have been studied to elucidate its mode of action. This review briefly summarizes the best studied features of honey, highlighting it as an appealing alternative medicine. In these reports, the health benefits of honey range from antioxidant, immunomodulatory, and anti-inflammatory activity to anticancer action, metabolic and cardiovascular benefits, prebiotic properties, human pathogen control, and antiviral activity. These studies also support that the honey’s biological activity is mainly dependent on its floral or geographic origin. In addition, some promising synergies between honey and antibiotics have been found, as well as some antiviral properties that require further investigation. Altogether, these studies show that honey is effectively a nutraceutical foodstuff.

101 citations

Journal ArticleDOI
TL;DR: The remarkable growth of therapeutic peptide development in the past decade has led to a large number of market approvals and the market value is expected to hit $25 billion by 2018, driven by the increasing incidences of metabolic and cardiovascular diseases and technological advancements in peptide synthesis.
Abstract: The remarkable growth of therapeutic peptide development in the past decade has led to a large number of market approvals and the market value is expected to hit $25 billion by 2018. This significant market increase is driven by the increasing incidences of metabolic and cardiovascular diseases and technological advancements in peptide synthesis. For this reason, the search for bioactive peptides has also increased exponentially. Many bioactive peptides from food and nonfood sources have shown positive health effects yet, obstacles such as the need to implement efficient and cost-effective strategies for industrial scale production, good manufacturing practices as well as well-designed clinical trials to provide robust evidence for supporting health claims continue to exist. Several other factors such as the possibility of allergenicity, toxicity and the stability of biological functions of the peptides during gastrointestinal digestion would need to be addressed.

100 citations

Journal ArticleDOI
TL;DR: The aim of this work is to summarize the updated evidence for antiviral activity of different plants and their isolated bioactive compounds, evaluating also the potential interactions, which can occur in cotreatment with conventional antiviral drugs.
Abstract: Viral infections represent one of the main causes of disease worldwide, especially today due to the increase of migration, global travel, and urbanization. The several side effects of the conventional drugs and the growing phenomenon of resistance have led researchers to turn to the plant kingdom as a source of potential new antiviral drugs. The aim of this work is to summarize the updated evidence for antiviral activity of different plants and their isolated bioactive compounds, evaluating also the potential interactions, which can occur in cotreatment with conventional antiviral drugs. The plant complexes have proved to be usually more active than their most abundant isolated compounds by hypothesizing synergistic mechanisms. In addition to cellular and molecular investigations, molecular docking studies have proved essential in highlighting the interaction mechanisms of bioactive compounds with target molecules. However, the use of nonstandardized extracts, or too high concentrations in vitro, which do not reproduce their bioavailability in vivo, are often limiting factors. Moreover, the lack of studies concerning the safety profile of plant extracts and their isolated compounds, alone or in combination with conventional antiviral drugs, is the most worrying aspect. In light of this, further studies are needed to validate their possible therapeutic use.

87 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent developments of efficient physical extraction technologies including ultrasound assisted extraction (UAE), microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrahigh pressure-assisted (UPE) and pulsed electric field extraction (PEF) for active constituents from edible fungi and present a brief summary of their potential bioactivities.
Abstract: Background Edible fungi are a great source of active constituents, including polysaccharides, proteins, terpenoids, minerals and vitamins. In particular, they have potential antitumor, antioxidant, immunological activity and could be applied for clinical disease treatment. Conventional extraction methods for active constituents usually involve organic solvents and may result in environmental problem and noticeable degradation of the constituents. The efficient physical extraction technologies have gained much more attention worldwide which can improve efficiency and reduce degradation of active ingredients. Scope and approach This review discusses the recent developments of efficient physical extraction technologies including ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrahigh pressure-assisted extraction (UPE) and pulsed electric field extraction (PEF) for active constituents from edible fungi and presents a brief summary of their potential bioactivities. Key findings and conclusions These technologies have been demonstrated to increase the extraction yield, improve product quality, and are energy efficient and environmentally friendly. It is expected that these efficient physical technologies will be gradually used in extraction of a variety of active constituents in the near future. Future research needs to consider varieties of further combined applications of physical technologies, which may allow a better maintenance of the functionality of active ingredients. The great potential of these extracted edible fungi active compounds could be used as the ingredients for health care medicine and foods. Meanwhile, consumer's acceptance, safety and legal aspects, and commercial availability of health products should also be taken into consideration in future studies.

81 citations