scispace - formally typeset
Search or ask a question
Author

Ayesha Zafar

Bio: Ayesha Zafar is an academic researcher from COMSATS Institute of Information Technology. The author has contributed to research in topics: Smart grid & Energy management. The author has an hindex of 4, co-authored 10 publications receiving 90 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a meta-heuristic based HEM system (HEMS) by incorporating the enhanced differential evolution (EDE) and harmony search algorithm (HSA) and shows that the proposed scheme outperforms the existing meta- heuristic techniques ( HSA and EDE) in terms of cost and PAR.
Abstract: The emergence of the smart grid has empowered the consumers to manage the home energy in an efficient and effective manner. In this regard, home energy management (HEM) is a challenging task that requires efficient scheduling of smart appliances to optimize energy consumption. In this paper, we proposed a meta-heuristic based HEM system (HEMS) by incorporating the enhanced differential evolution (EDE) and harmony search algorithm (HSA). Moreover, to optimize the energy consumption, a hybridization based on HSA and EDE operators is performed. Further, multiple knapsacks are used to ensure that the load demand for electricity consumers does not exceed a threshold during peak hours. To achieve multiple objectives at the same time, hybridization proved to be effective in terms of electricity cost and peak to average ratio (PAR) reduction. The performance of the proposed technique; harmony EDE (HEDE) is evaluated via extensive simulations in MATLAB. The simulations are performed for a residential complex of multiple homes with a variety of smart appliances. The simulation results show that EDE performs better in terms of cost reduction as compared to HSA. Whereas, in terms of PAR, HSA is proved to be more efficient as compared to EDE. However, the proposed scheme outperforms the existing meta-heuristic techniques (HSA and EDE) in terms of cost and PAR.

66 citations

Proceedings ArticleDOI
27 Mar 2017
TL;DR: This work evaluates performance of home energy management system (HEM) by using three meta-heuristic optimization techniques: Harmony search algorithm (HSA), Bacterial foraging optimization (BFO) and Enhanced deferential evolution (EDE).
Abstract: In this work, we evaluate performance of home energy management system(HEM) by using three meta-heuristic optimization techniques: Harmony search algorithm (HSA), Bacterial foraging optimization (BFO) and Enhanced deferential evolution(EDE). We categorize appliances into three groups on the basis of their energy consumption pattern. Real time pricing (RTP) scheme is used for electricity bill calculation. Our objectives are to minimize electricity cost, energy consumption, reduction in peak to average ratio while maximizing user comfort. However, there exists a trade-off between different objectives. Our simulation results show that there exist a trade-off between user comfort and cost. Results also show that in terms of cost HSA perform better among other techniques.

26 citations

Book ChapterDOI
10 Jul 2017
TL;DR: Based on all the system constraints, an energy management strategy is proposed in this research work, which helps to minimize the power consumption peak and operating cost of microgrid.
Abstract: The greenhouse gas emission is increasing around the globe. In order to reduce its emission factor, the concept of microgrid is introduced, which integrates renewable energy sources. The microgrid has a point of common coupling which helps to exchange power with utility during different times of a day to meet load demand. Based on all the system constraints, an energy management strategy is proposed in this research work, which helps to minimize the power consumption peak and operating cost of microgrid. For this purpose the appliances of each smart home in the residential area and distributed generator of microgrid are scheduled using binary particle swarm optimization to economically meet the consumer demand considering the desired objectives. For this purpose, proposed strategy is employed for the economic energy management of homes and microgrid. Significance of the proposed strategy is proved through performing simulations.

13 citations

Proceedings ArticleDOI
27 Mar 2017
TL;DR: A bio-inspired technique, binary particle swarm optimization (BPSO), is used for the optimal scheduling of appliances in a smart home and results illustrate the effectiveness of the HEMS in terms of electricity cost, demand, user comfort and peak to average ratio (PAR).
Abstract: With the advent of smart grid (SG) and the emergence of information and communication technology, smart meters, bidirectional communication, smart homes and storage systems the energy consumption patterns at the consumer premises have been revolutionized. Moreover, with the rise of renewable energy sources (RESs), storage systems and electric vehicles (EVs) a profound amelioration in the energy management systems has been observed. Home energy management systems (HEMSs) help to control, manage and optimize the energy in smart homes. In this paper, we present a HEMS using multi-agent system (MAS) for smart homes. The HEMS uses priority techniques with the integration of electrical supply system (ESS). Furthermore, a bio-inspired technique, binary particle swarm optimization (BPSO), is used for the optimal scheduling of appliances in a smart home. Simulation results illustrate the effectiveness of the HEMS in terms of electricity cost, demand, user comfort and peak to average ratio (PAR).

7 citations

Book ChapterDOI
10 Jul 2017
TL;DR: This paper presents a multi-objective HEMS to schedule home appliances using Cuckoo Search Algorithm (CSA) while considering the objective load fitness criteria, which effectively reduces the cost and peak load.
Abstract: Increasing demand of power and emergence of smart grid has gain maximum attention of researchers which has further opened new opportunities for Home Energy Management System (HEMS). HEMS under Demand Response (DR) helps to reduce the On-peak hour load by shifting the load toward the Off-peak hours. This load shifting strategy effects the user comfort, however in return DR gives them incentives in term of electricity bill reduction. Consumer electricity cost and peak load have a tradeoff, to sort out this situation an efficient system is required. In this paper, we present a multi-objective HEMS to schedule home appliances using Cuckoo Search Algorithm (CSA) while considering the objective load fitness criteria. This proposed load fitness criteria effectively reduces the cost and peak load. Simulations are performed to verify the generic behavior i.e., system performance on any price tariffs. For this purpose, results are validated for three price signals: day-ahead Real Time Peak Price (RTP), Time of Use (TOU) and Critical Peak Price (CPP).

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A rigorous yet systematic review is presented to organize and summarize the information on the PSO algorithm and the developments and trends of its most basic as well as of some of the very notable implementations that have been introduced recently, bearing in mind the coverage of paradigm, theory, hybridization, parallelization, complex optimization, and the diverse applications of the algorithm.
Abstract: Over the ages, nature has constantly been a rich source of inspiration for science, with much still to discover about and learn from. Swarm Intelligence (SI), a major branch of artificial intelligence, was rendered to model the collective behavior of social swarms in nature. Ultimately, Particle Swarm Optimization algorithm (PSO) is arguably one of the most popular SI paradigms. Over the past two decades, PSO has been applied successfully, with good return as well, in a wide variety of fields of science and technology with a wider range of complex optimization problems, thereby occupying a prominent position in the optimization field. However, through in-depth studies, a number of problems with the algorithm have been detected and identified; e.g., issues regarding convergence, diversity, and stability. Consequently, since its birth in the mid-1990s, PSO has witnessed a myriad of enhancements, extensions, and variants in various aspects of the algorithm, specifically after the twentieth century, and the related research has therefore now reached an impressive state. In this paper, a rigorous yet systematic review is presented to organize and summarize the information on the PSO algorithm and the developments and trends of its most basic as well as of some of the very notable implementations that have been introduced recently, bearing in mind the coverage of paradigm, theory, hybridization, parallelization, complex optimization, and the diverse applications of the algorithm, making it more accessible. Ease for researchers to determine which PSO variant is currently best suited or to be invented for a given optimization problem or application. This up-to-date review also highlights the current pressing issues and intriguing open challenges haunting PSO, prompting scholars and researchers to conduct further research both on the theory and application of the algorithm in the forthcoming years.

169 citations

Journal ArticleDOI
31 Dec 2020-Energies
TL;DR: This work gives a concise state-of-the-art overview of the main control approaches for energy management in MG systems, and a classification of approaches is given in order to shed more light on the need for predictive control forEnergy management in MGs.
Abstract: The demand for electricity is increased due to the development of the industry, the electrification of transport, the rise of household demand, and the increase in demand for digitally connected devices and air conditioning systems. For that, solutions and actions should be developed for greater consumers of electricity. For instance, MG (Micro-grid) buildings are one of the main consumers of electricity, and if they are correctly constructed, controlled, and operated, a significant energy saving can be attained. As a solution, hybrid RES (renewable energy source) systems are proposed, offering the possibility for simple consumers to be producers of electricity. This hybrid system contains different renewable generators connected to energy storage systems, making it possible to locally produce a part of energy in order to minimize the consumption from the utility grid. This work gives a concise state-of-the-art overview of the main control approaches for energy management in MG systems. Principally, this study is carried out in order to define the suitable control approach for MGs for energy management in buildings. A classification of approaches is also given in order to shed more light on the need for predictive control for energy management in MGs.

83 citations

Journal ArticleDOI
TL;DR: In this paper, a novel approach is proposed to optimize the behavior of household appliances towards retail electricity price, where a heuristic Forward-Backward Algorithm (F-BA) is used to minimize the energy cost of the thermal appliances satisfying the residents' comfort.

80 citations

Journal ArticleDOI
TL;DR: This model determines the optimum location-allocation and inventory management decisions and aims to minimize the total cost of the supply chain includes fixed costs, operating costs, inventory holding costs, wastage costs, and transportation costs along with minimizing the substitution levels to provide safer blood transfusion services.
Abstract: Based on the uncertain conditions such as uncertainty in blood demand and facility disruptions, and also, due to the uncertain nature of blood products such as perishable lifetime, distinct blood groups, and ABO-Rh(D) compatibility and priority rules among these groups, this paper aims to contribute blood supply chains under uncertainty. In this respect, this paper develops a bi-objective two-stage stochastic programming model for managing a red blood cells supply chain that observes above-mentioned issues. This model determines the optimum location-allocation and inventory management decisions and aims to minimize the total cost of the supply chain includes fixed costs, operating costs, inventory holding costs, wastage costs, and transportation costs along with minimizing the substitution levels to provide safer blood transfusion services. To handle the uncertainty of the blood supply chain environment, a robust optimization approach is devised to tackle the uncertainty of parameters, and the TH method is utilized to make the bi-objective model solvable. Then, a real case study of Mashhad city, in Iran, is implemented to demonstrate the model practicality as well as its solution approaches, and finally, the computational results are presented and discussed. Further, the impacts of the different parameters on the results are analyzed which help the decision makers to select the value of the parameters more accurately.

64 citations