scispace - formally typeset
Search or ask a question
Author

Ayman Abbosh

Bio: Ayman Abbosh is an academic researcher from University of Arkansas at Little Rock. The author has contributed to research in topics: Antenna (radio) & Dipole antenna. The author has an hindex of 6, co-authored 15 publications receiving 400 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Experimental and numerical results show that the radiation characteristics, impedance matching, and SAR values of the proposed design are significantly improved compared to conventional monopole and dipole antennas, which makes it a good candidate for the wearable telemedicine application.
Abstract: We present a flexible, compact antenna system intended for telemedicine applications. The design is based on an M-shaped printed monopole antenna operating in the Industrial, Scientific, and Medical (ISM) 2.45 GHz band integrated with a miniaturized slotted Jerusalem Cross (JC) Artificial Magnetic Conductor (AMC) ground plane. The AMC ground plane is utilized to isolate the user's body from undesired electromagnetic radiation in addition to minimizing the antenna's impedance mismatch caused by the proximity to human tissues. Specific Absorption Rate (SAR) is analyzed using a numerical human body model (HUGO) to assess the feasibility of the proposed design. The antenna expresses 18% impedance bandwidth; moreover, the inclusion of the AMC ground plane increases the front to back ratio by 8 dB, provides 3.7 dB increase in gain, in addition to 64% reduction in SAR. Experimental and numerical results show that the radiation characteristics, impedance matching, and SAR values of the proposed design are significantly improved compared to conventional monopole and dipole antennas. Furthermore, it offers a compact and flexible solution which makes it a good candidate for the wearable telemedicine application.

349 citations

Book ChapterDOI
06 Mar 2013
TL;DR: Their light weight, low-cost manufacturing, ease of fabrication, and the availability of inexpensive flexible substrates (i.e., papers, textiles, and plastics) make flexible electronics an ap- pealing candidate for the next generation of consumer electronics.
Abstract: Their light weight, low-cost manufacturing, ease of fabrication, and the availability of inex‐ pensive flexible substrates (i.e.: papers, textiles, and plastics) make flexible electronics an ap‐ pealing candidate for the next generation of consumer electronics [2]. Moreover, recent developments in miniaturized and flexible energy storage and self-powered wireless com‐ ponents paved the road for the commercialization of such systems [3].

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a flexible, ultra-low profile, and compact dual band antenna for wearable and flexible telemedicine systems and wireless body area networks (WBANs).
Abstract: Recent wearable health monitoring systems use multiple biosensors embedded within a wireless device. In order to reliably transmit the desired vital signs in such systems, a new set of antenna design requirements arise. In this paper, we present a flexible, ultra-low profile, and compact dual band antenna. The proposed design is suitable for wearable and flexible telemedicine systems and wireless body area networks (WBANs). The antenna is inkjet printed on a 50.8µ mP olyimide Kapton substrate and fed by a Coplanar Waveguide (CPW). The proposed design has the merits of compactness, light weight, wide bandwidth, high efficiency, and mechanical stability. The performance of the antenna is also characterized against bending and rolling effects to assess its behaviour in a realistic setup since it is expected to be rolled on curved surfaces when operated. The antenna is shown to exhibit very low susceptibility to performance degradation when tested against bending effects. Good radiation characteristics, reduced fabrication complexity, cost effectiveness, and excellent physical properties suggest that the proposed design is a feasible candidate for the targeted application.

35 citations

Proceedings ArticleDOI
07 Jul 2013
TL;DR: In this paper, a Yagi-Uda antenna array consisting of four radiating elements is presented, where array elements are oriented back to back in a cross fashion to achieve a pattern orthogonality utilizing the end-fire radiation characteristics of the Yagi Uda antennas.
Abstract: In this paper, A Yagi-Uda antenna array consisting of four radiating elements is presented. The array elements are oriented back to back in a cross fashion to achieve a pattern orthogonality utilizing the end-fire radiation characteristics of the Yagi-Uda antennas. This technique is proposed to reduce the mutual coupling between the radiating elements which is essential to the performance of Multiple Input Multiple Output (MIMO) systems. Design and simulations are conducted using CST Microwave Studio which is based on the Finite Integration Technique (FIT). Results show that the correlation level is below -35 dB between the array elements at 5.2 GHz with about λ/4 separation distance.

17 citations

Proceedings ArticleDOI
07 Jul 2013
TL;DR: In this article, two patch antenna elements are designed to work at 58 GHz frequency and the E-plane mutual coupling between the two antenna elements has been reduced by using a new miniaturized soft surface structure that allows a λ 0/2 distance between the patches.
Abstract: Two patch antenna elements are designed to work at 58 GHz frequency The E-plane mutual coupling between the two antenna elements has been reduced by 10 dB by using a new miniaturized soft surface structure that allows a λ0/2 distance between the patches The radiation patterns show no significant change in the radiation characteristics, but better directivity, which is expected

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed and the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented.
Abstract: The performance and integration density of silicon integrated circuits (ICs) have progressed at an unprecedented pace in the past 60 years. While silicon ICs thrive at low-power high-performance computing, creating flexible and large-area electronics using silicon remains a challenge. On the other hand, flexible and printed electronics use intrinsically flexible materials and printing techniques to manufacture compliant and large-area electronics. Nonetheless, flexible electronics are not as efficient as silicon ICs for computation and signal communication. Flexible hybrid electronics (FHE) leverages the strengths of these two dissimilar technologies. It uses flexible and printed electronics where flexibility and scalability are required, i.e., for sensing and actuating, and silicon ICs for computation and communication purposes. Combining flexible electronics and silicon ICs yields a very powerful and versatile technology with a vast range of applications. Here, the fundamental building blocks of an FHE system, printed sensors and circuits, thinned silicon ICs, printed antennas, printed energy harvesting and storage modules, and printed displays, are discussed. Emerging application areas of FHE in wearable health, structural health, industrial, environmental, and agricultural sensing are reviewed. Overall, the recent progress, fabrication, application, and challenges, and an outlook, related to FHE are presented.

396 citations

Journal ArticleDOI
TL;DR: In this paper, a conformal wearable antenna that operates in the 2.36-2.4 GHz medical body-area network band is proposed, which is enabled by placing a highly truncated metasurface, consisting of only a two by two array of I-shaped elements, underneath a planar monopole.
Abstract: We propose a compact conformal wearable antenna that operates in the 2.36-2.4 GHz medical body-area network band. The antenna is enabled by placing a highly truncated metasurface, consisting of only a two by two array of I-shaped elements, underneath a planar monopole. In contrast to previously reported artificial magnetic conducting ground plane backed antenna designs, here the metasurface acts not only as a ground plane for isolation, but also as the main radiator. An antenna prototype was fabricated and tested, showing a strong agreement between simulation and measurement. Comparing to previously proposed wearable antennas, the demonstrated antenna has a compact form factor of 0.5 λ 0 ×0.3 λ 0 ×0.028 λ 0 , all while achieving a 5.5% impedance bandwidth, a gain of 6.2 dBi, and a front-to-back ratio higher than 23 dB. Further numerical and experimental investigations reveal that the performance of the antenna is extraordinarily robust to both structural deformation and human body loading, far superior to both planar monopoles and microstrip patch antennas. Additionally, the introduced metal backed metasurface enables a 95.3% reduction in the specific absorption rate, making such an antenna a prime candidate for incorporation into various wearable devices.

301 citations

Journal ArticleDOI
TL;DR: In this article, a compact circularly polarized (CP) co-designed filtering antenna is reported, which is based on a patch radiator seamlessly integrated with a bandpass filter composed of coupled stripline open-loop resonators, which are designed together as a system.
Abstract: A compact circularly polarized (CP) co-designed filtering antenna is reported. The device is based on a patch radiator seamlessly integrated with a bandpass filter composed of coupled stripline open-loop resonators, which are designed together as a system. In the proposed design, the patch functions simultaneously as the radiator and the last stage resonator of the filter, resulting in a low-profile integrated radiating and filtering module with a small overall form factor of $\mathbf{0.53{\lambda _0} \times 0.53{\lambda _0} \times 0.07{\lambda _0}}$ . It is shown that the filtering circuit not only ensures frequency selectivity but also provides impedance matching functionality, which serves to broaden both the impedance and axial ratio bandwidths. The designed filtering antenna was fabricated and measured, experimentally achieving an $\mathbf{{S_{11}} , an axial ratio of less than 3 dB and a gain higher than 5.2 dBi over a bandwidth from 3.77 to 4.26 GHz, i.e., around 12.2%, which makes it an excellent candidate for integration into a variety of wireless systems. A linearly polarized version of the integrated filtering antenna was also demonstrated. In addition, further full-wave simulations and experiments were carried out to verify that the designed CP filtering antenna maintains its properties even when mounted on different positions of the human body with various body gestures. The stable impedance and radiation properties also make it a suitable candidate as a wearable antenna for off-body wireless communications.

188 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the evolution of wearable textile antennas over the last couple of decades and gave particular emphasis to the process of embroidery, which is advantageous for the following reasons: (i) bespoke or mass produced designs can be manufactured using digitized embroideries machines; (ii) glue is not required and (iii) the designs are aesthetic and are integrated into clothing rather than being attached to it.
Abstract: This paper will review the evolution of wearable textile antennas over the last couple of decades. Particular emphasis will be given to the process of embroidery. This technique is advantageous for the following reasons: (i) bespoke or mass produced designs can be manufactured using digitized embroidery machines; (ii) glue is not required and (iii) the designs are aesthetic and are integrated into clothing rather than being attached to it. The embroidery technique will be compared to alternative manufacturing processes. The challenges facing the industrial and public acceptance of this technology will be assessed. Hence, the key opportunities will be highlighted.

183 citations

Journal ArticleDOI
TL;DR: In this article, a low-profile wearable antenna is presented for on-body wireless body area network (WBAN) applications, which combines the Koch fractal geometry, meandering slits, and defected ground structure to achieve a novel hybrid structure with compact footprint, good structural conformability, and enhanced impedance bandwidth.
Abstract: A compact and low-profile wearable antenna is presented for on-body wireless body area network (WBAN) applications. The proposed triangular patch antenna is designed using low-cost widely available vinyl polymer-based flexible substrate. The final antenna topology is obtained by the combination of the Koch fractal geometry, meandering slits, and defected ground structure, to achieve a novel hybrid structure with compact footprint, good structural conformability, and enhanced impedance bandwidth (BW) to operate in the Industrial, Scientific, and Medical band with center frequency at 2.45 GHz. The fabricated prototype of the antenna has shown a good agreement between numerical and experimental results. In comparison to state-of-the-art prototypes, our design has more compact form factor of 0.318λo × 0.318λo × 0.004λo, along with 7.75% impedance BW, a peak gain of 2.06 dBi, and overall radiated efficiency of 75%. For the assessment of a specific absorption rate (SAR) performance of our design, it is tested on realistic heterogeneous HUGO voxel model. Both numerical and experimental investigations revealed extremely good robustness to both human body loading and structural deformation, making it an ideal candidate for flexible and body-worn devices.

179 citations