scispace - formally typeset
Search or ask a question
Author

Azriel Rosenfeld

Other affiliations: Meiji University
Bio: Azriel Rosenfeld is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Image processing & Feature detection (computer vision). The author has an hindex of 94, co-authored 595 publications receiving 49426 citations. Previous affiliations of Azriel Rosenfeld include Meiji University.


Papers
More filters
Journal ArticleDOI
TL;DR: The GRADMAT as discussed by the authors is a generalization of the medial axis transformation, in which a score is computed for each point P of a grayscale picture based on the gradient magnitudes at pairs of points that have P as their midpoint.
Abstract: Blum's medial axis transformation (MAT) for binary pictures yields medial axis points that lie midway between opposite borders of a region or along angle bisectors. This note discusses a generalization of the MAT in which a score is computed for each point P of a grayscale picture based on the gradient magnitudes at pairs of points that have P as their midpoint. These scores are high at points that lie midway between pairs of antiparallel edges or along angle bisectors, so that they define a MAT-like ``skeleton,'' which we may call the GRADMAT. However, this skeleton is rather sensitive to the presence of noise edges or to irregularities in the region edges, and it also is subject to artifacts created by pairs of edges belonging to different objects.

22 citations

Journal ArticleDOI
TL;DR: A number of methods are presented for finding clusters in collinear collections of line segments using merging methods and splitting methods that make use of an evaluation function.

22 citations

Journal ArticleDOI
TL;DR: SN characterizes sets P of polyhedra (or polygons) in which the neighborhood of any polyhedron, relative to any subset P ′ of P, is simply connected.

22 citations

Journal ArticleDOI
TL;DR: A modified relaxation process using information about the size, spatial position, and orientation of the object parts yielded a high degree of disambiguation.
Abstract: Relaxation is applied to the segmentation of closed boundary curves of shapes. The ambiguous segmentation of the boundary is represented by a directed graph structure whose nodes represent segments, where two nodes are joined by an arc if the segments are consecutive along the boundary. A probability vector is associated with each node; each component of this vector provides an estimate of the probability that the corresponding segment is a particular part of the object. Relaxation is used to eliminate impossible sequences of parts, or reduce the probabilities of unlikely ones. In experiments involving airplane shapes, this almost always results in a drastic simplification of the graph with only good interpretations surviving. The approach is also extended to include curve linking and gap filling. A chain coded input image is broken into segments based on a measure of local curvature. Gap completions linking pairs of segments are then proposed and represented in a graph structure. A second graph, whose nodes consist of paths in the above graph, is constructed, and the nodes of the second graph are probabilistically classified as various object parts. Relaxation is then applied to increase the probability of mutually supporting classifications, and decrease the probability of unsupported decisions. A modified relaxation process using information about the size, spatial position, and orientation of the object parts yielded a high degree of disambiguation.

22 citations

Journal ArticleDOI
TL;DR: This paper shows that the expected cumulative error when matching an image and a template is maximized by using an ordering technique, and presents experimental results for digital images, when the probability densities of their gray levels, or more generally, the probabilities of arrays of local property values derived from the images.
Abstract: Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel comparison of the pixels in the image and in the template. If we have probabilistic models for the classes of images being matched, we can reduce the expected computational cost of matching by comparing the pixels in an appropriate order. In this paper we show that the expected cumulative error when matching an image and a template is maximized by using an ordering technique. We also present experimental results for digital images, when we know the probability densities of their gray levels, or more generally, the probability densities of arrays of local property values derived from the images.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge.

28,073 citations

Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

20,028 citations

Journal ArticleDOI
TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Abstract: We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.

18,761 citations