scispace - formally typeset
Search or ask a question
Author

B. Ahlborn

Bio: B. Ahlborn is an academic researcher. The author has contributed to research in topics: Carnot cycle & Carnot heat engine. The author has an hindex of 1, co-authored 1 publications receiving 1815 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the efficiency of a Carnot engine for the case where the power output is limited by the rates of heat transfer to and from the working substance was analyzed, and it was shown that the efficiency at maximum power output was given by the expression η = 1 − (T2/T1)1/2 where T1 and T2 are the respective temperatures of the heat source and heat sink.
Abstract: The efficiency of a Carnot engine is treated for the case where the power output is limited by the rates of heat transfer to and from the working substance. It is shown that the efficiency, η, at maximum power output is given by the expression η = 1 − (T2/T1)1/2 where T1 and T2 are the respective temperatures of the heat source and heat sink. It is also shown that the efficiency of existing engines is well described by the above result.

1,965 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the literature on thermal transport in nanoscale devices can be found in this article, where the authors highlight the recent developments in experiment, theory and computation that have occurred in the past ten years and summarizes the present status of the field.
Abstract: Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid–solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The promise of improved thermoelectric materials and problems of thermal management of optoelectronic devices have stimulated extensive studies of semiconductor superlattices; agreement between experiment and theory is generally poor. Advances in measurement methods, e.g., the 3ω method, time-domain thermoreflectance, sources of coherent phonons, microfabricated test structures, and the scanning thermal microscope, are enabling new capabilities for nanoscale thermal metrology.

2,933 citations

Journal ArticleDOI
TL;DR: Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Abstract: Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (Some figures may appear in colour only in the online journal) This article was invited by Erwin Frey.

2,834 citations

Journal ArticleDOI
Peter Reimann1
TL;DR: In this paper, the main emphasis is put on directed transport in so-called Brownian motors (ratchets), i.e. a dissipative dynamics in the presence of thermal noise and some prototypical perturbation that drives the system out of equilibrium without introducing a priori an obvious bias into one or the other direction of motion.

2,098 citations

Journal ArticleDOI
TL;DR: Entropy generation minimization (finite time thermodynamics, or thermodynamic optimization) is the method that combines into simple models the most basic concepts of heat transfer, fluid mechanics, and thermodynamics as mentioned in this paper.
Abstract: Entropy generation minimization (finite time thermodynamics, or thermodynamic optimization) is the method that combines into simple models the most basic concepts of heat transfer, fluid mechanics, and thermodynamics. These simple models are used in the optimization of real (irreversible) devices and processes, subject to finite‐size and finite‐time constraints. The review traces the development and adoption of the method in several sectors of mainstream thermal engineering and science: cryogenics, heat transfer, education, storage systems, solar power plants, nuclear and fossil power plants, and refrigerators. Emphasis is placed on the fundamental and technological importance of the optimization method and its results, the pedagogical merits of the method, and the chronological development of the field.

1,516 citations

Proceedings Article
14 Jul 1980
TL;DR: According to a physical interpretation, the central result of this paper is that i¢ is ideally possible to build sequential c/rcuits with zero internal power dissipation.
Abstract: The theory of reversible computing is based on invertib|e primitives and composition rules that preserve invertibility. With these constraints, one can still satisfactorily deal with both functional and structural aspects of computing processes; at the same time, one attains a closer correspondence between the behavior of abstract computing systems and the microscopic physical laws (which are presumed to be strictly reversible) that underly any concrete implementation of such systems. According to a physical interpretation, the central result of this paper is that i¢ is ideally possible to build sequential c/rcuits with zero internal power dissipation.

1,357 citations