scispace - formally typeset
Search or ask a question
Author

B.B. Bauer

Bio: B.B. Bauer is an academic researcher from CBS Laboratories. The author has contributed to research in topics: Underwater acoustics. The author has an hindex of 1, co-authored 1 publications receiving 791 citations.

Papers
More filters
Journal ArticleDOI
B.B. Bauer1
01 Apr 1963

897 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A maximum likelihood (ML) acoustic source location estimation method is presented for the application in a wireless ad hoc sensor network and consistently outperforms existing acoustic energy based source localization methods.
Abstract: A maximum likelihood (ML) acoustic source location estimation method is presented for the application in a wireless ad hoc sensor network. This method uses acoustic signal energy measurements taken at individual sensors of an ad hoc wireless sensor network to estimate the locations of multiple acoustic sources. Compared to the existing acoustic energy based source localization methods, this proposed ML method delivers more accurate results and offers the enhanced capability of multiple source localization. A multiresolution search algorithm and an expectation-maximization (EM) like iterative algorithm are proposed to expedite the computation of source locations. The Crame/spl acute/r-Rao Bound (CRB) of the ML source location estimate has been derived. The CRB is used to analyze the impacts of sensor placement to the accuracy of location estimates for single target scenario. Extensive simulations have been conducted. It is observed that the proposed ML method consistently outperforms existing acoustic energy based source localization methods. An example applying this method to track military vehicles using real world experiment data also demonstrates the performance advantage of this proposed method over a previously proposed acoustic energy source localization method.

731 citations

Journal ArticleDOI
TL;DR: A theoretical model is proposed that agrees well with observed transducer behavior and is used to demonstrate that microfabricated ultrasonic transducers constitute an attractive alternative to piezoelectric transducers in many applications.
Abstract: The current state of novel technology, surface microfabricated ultrasonic transducers, is reported. Experiments demonstrating both air and water transmission are presented. Air-coupled longitudinal wave transmission through aluminum is demonstrated, implying a 110 dB dynamic range for transducers at 2.3 MHz in air. Water transmission experiments from 1 to 20 MHz are performed, with a measured 60 dB SNR at 3 MHz. A theoretical model is proposed that agrees well with observed transducer behavior. Most significantly, the model is used to demonstrate that microfabricated ultrasonic transducers constitute an attractive alternative to piezoelectric transducers in many applications.

616 citations

01 Aug 2000
TL;DR: He went on to Brown University in Providence, Rhode Island to study signal processing and began research on microphone arrays and received a Master of Science degree in Electrical Engineering in 1993 and continued to pursue his work towards a Doctor of Philosophy degree.

403 citations

Journal ArticleDOI
TL;DR: This analysis describes a technique to extend the reconstruction to anisotropic elastic properties in terms of a so‐called transversely isotropic model, which is capable of describing elastic shear anisotropy of parallel fibers.
Abstract: MR-elastography is a new technique for assessing the viscoelastic properties of tissue. One current focus of elastography is the provision of new physical parameters for improving the specificity in breast cancer diagnosis. This analysis describes a technique to extend the reconstruction to anisotropic elastic properties in terms of a so-called transversely isotropic model. Viscosity is treated as being isotropic. The particular model chosen for the anisotropy is appealing because it is capable of describing elastic shear anisotropy of parallel fibers. The dependence of the reconstruction on the particular choice of Poisson's ratio is eliminated by extracting the compressional displacement contribution using the Helmholtz-Hodge decomposition. Results are presented for simulations, a polyvinyl alcohol breast phantom, excised beef muscle, and measurements in two patients with breast lesions (invasive ductal carcinoma and fibroadenoma). The results show enhanced anisotropic and viscous properties inside the lesions and an indication for preferred fiber orientation.

372 citations

Journal ArticleDOI
16 Mar 2006-Nature
TL;DR: Evidence of ultrasonic communication in an amphibian, the concave-eared torrent frog (Amolops tormotus), from Huangshan Hot Springs, China is reported and it is found that the audible as well as the ultrasonic components of an A. tormos call can evoke male vocal responses.
Abstract: Among vertebrates, only microchiropteran bats, cetaceans and some rodents are known to produce and detect ultrasounds (frequencies greater than 20 kHz) for the purpose of communication and/or echolocation, suggesting that this capacity might be restricted to mammals. Amphibians, reptiles and most birds generally have limited hearing capacity, with the ability to detect and produce sounds below approximately 12 kHz. Here we report evidence of ultrasonic communication in an amphibian, the concave-eared torrent frog (Amolops tormotus) from Huangshan Hot Springs, China. Males of A. tormotus produce diverse bird-like melodic calls with pronounced frequency modulations that often contain spectral energy in the ultrasonic range. To determine whether A. tormotus communicates using ultrasound to avoid masking by the wideband background noise of local fast-flowing streams, or whether the ultrasound is simply a by-product of the sound-production mechanism, we conducted acoustic playback experiments in the frogs' natural habitat. We found that the audible as well as the ultrasonic components of an A. tormotus call can evoke male vocal responses. Electrophysiological recordings from the auditory midbrain confirmed the ultrasonic hearing capacity of these frogs and that of a sympatric species facing similar environmental constraints. This extraordinary upward extension into the ultrasonic range of both the harmonic content of the advertisement calls and the frog's hearing sensitivity is likely to have co-evolved in response to the intense, predominantly low-frequency ambient noise from local streams. Because amphibians are a distinct evolutionary lineage from microchiropterans and cetaceans (which have evolved ultrasonic hearing to minimize congestion in the frequency bands used for sound communication and to increase hunting efficacy in darkness), ultrasonic perception in these animals represents a new example of independent evolution.

280 citations