scispace - formally typeset
Search or ask a question
Author

B. Bhuyan

Other affiliations: University at Albany, SUNY
Bio: B. Bhuyan is an academic researcher from Indian Institute of Technology Guwahati. The author has contributed to research in topics: Branching fraction & Physics. The author has an hindex of 73, co-authored 658 publications receiving 21275 citations. Previous affiliations of B. Bhuyan include University at Albany, SUNY.


Papers
More filters
Journal ArticleDOI
J. P. Lees1, V. Poireau1, V. Tisserand1, J. Garra Tico2  +362 moreInstitutions (77)
TL;DR: In this article, the BaBar data sample was used to investigate the sensitivity of BaBar ratios to new physics contributions in the form of a charged Higgs boson in the type II two-Higgs doublet model.
Abstract: Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.

660 citations

Journal ArticleDOI
M. Huschle1, T. Kuhr2, M. Heck1, P. Goldenzweig1  +218 moreInstitutions (64)
TL;DR: In this paper, the branching fraction ratio R(D)(()*()) of (B) over bar → D-(*())tau(-)(nu)over bar (tau) relative to (B), where l = e or mu, was measured using the full Belle data sample.
Abstract: We report a measurement of the branching fraction ratios R(D)(()*()) of (B) over bar -> D-(*())tau(-)(nu) over bar (tau) relative to (B) over bar -> D-(*())l(-)(nu) over barl (where l = e or mu) using the full Belle data sample of 772 x 10(6)B (B) over bar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. The measured values are R(D) = 0.375 +/- 0.064(stat) +/- 0.026(syst) and R(D*) = 0.293 +/- 0.038 (stat) +/- 0.015 (syst). The analysis uses hadronic reconstruction of the tag-side B meson and purely leptonic t decays. The results are consistent with earlier measurements and do not show a significant deviation from the standard model prediction.

652 citations

Journal ArticleDOI
Z. Q. Liu, C. P. Shen1, C. Z. Yuan, I. Adachi  +188 moreInstitutions (56)
TL;DR: In a study of Y(4260) → π+ π- J/φ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance that can be interpreted as a new charged charmoniumlike state.
Abstract: The cross section for ee+ e- → π+ π- J/ψ between 3.8 and 5.5 GeV is measured with a 967 fb(-1) data sample collected by the Belle detector at or near the Υ(nS) (n = 1,2,…,5) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of π+ π- J/ψ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of Y(4260) → π+ π- J/ψ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance, with mass M = (3894.5 ± 6.6 ± 4.5) MeV/c2 and width Γ = (63 ± 24 ± 26) MeV/c2, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.

622 citations

Journal ArticleDOI
J. P. Lees1, V. Poireau1, V. Tisserand1, E. Grauges2  +337 moreInstitutions (73)
TL;DR: The concept for this analysis is to a large degree based on earlier BABAR work and we acknowledge the guidance provided by M. Mazur as discussed by the authors, who consulted with theorists A. Datta, S. Westhoff,S. Fajfer, J. Kamenik, and I. Nisandzic on the calculations of the charged Higgs contributions to the decay rates.
Abstract: The concept for this analysis is to a large degree based on earlier BABAR work and we acknowledge the guidance provided by M. Mazur. The authors consulted with theorists A. Datta, S. Westhoff, S. Fajfer, J. Kamenik, and I. Nisandzic on the calculations of the charged Higgs contributions to the decay rates. We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relied critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economia y Competitividad (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA).

607 citations

Journal ArticleDOI
TL;DR: Fits to the mass spectrum indicate that a broad resonance with a mass of about 4.26 GeV/c2 is required to describe the observed structure, and the presence of additional narrow resonances cannot be excluded.
Abstract: We study initial-state radiation events, $e^+e^- \to \gamma_{ISR}\pi^+\pi^-J/\psi$, with data collected with the BaBar detector. We observe an accumulation of events near 4.26 GeV/$c^2$ in the invariant-mass spectrum of $\pi^+\pi^-J/\psi$. Fits of the mass spectrum indicate that a broad resonance with a mass of about 4.26 GeV/$c^2$ is required to describe the observed structure. The presence of additional narrow resonances cannot be excluded. The fitted width of the broad resonance is 50 to 90 MeV/$c^2$, depending on the fit hypothesis.

562 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations