scispace - formally typeset
Search or ask a question
Author

B. Breustedt

Bio: B. Breustedt is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Monte Carlo method & Internal dosimetry. The author has an hindex of 10, co-authored 34 publications receiving 290 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: To fully characterize the front dead layer (DL) of an HPGe detector at low photon energy range, its intrinsic efficiency curve was measured using a (241)Am radioactive source in 10-60 keV energy range.

50 citations

Journal ArticleDOI
TL;DR: First applications of this draft model showed that the height of the peak of urinary excretion after administration of DTPA was determined by the chelation rate, however, repetitions ofDTPA administration shortly after the first one showed no effect in the application of the draft model in contrast to data from real cases.
Abstract: Administration of diethylene triamine pentaacetic acid (DTPA) can enhance the urinary excretion rate of plutonium (Pu) for several days, but most of this Pu decorporation occurs on the first day after treatment. The development of a biokinetic model describing the mechanisms of decorporation of actinides by administration of DTPA was initiated as a task of the coordinated network for radiation dosimetry project. The modelling process was started by using the systemic biokinetic model for Pu from Leggett et al. and the biokinetic model for DTPA compounds of International Commission on Radiation Protection Publication 53. The chelation of Pu and DTPA to Pu-DTPA was treated explicitly and is assumed to follow a second-order process. It was assumed that the chelation takes place in the blood and in the rapid turnover soft tissues compartments of the Pu model, and that Pu-DTPA behaves in the same way as administered DTPA. First applications of this draft model showed that the height of the peak of urinary excretion after administration of DTPA was determined by the chelation rate. However, repetitions of DTPA administration shortly after the first one showed no effect in the application of the draft model in contrast to data from real cases. The present draft model is thus not yet realistic. Therefore several questions still have to be answered, notably about where the Pu-DTPA complexes are formed, which biological ligands of Pu are dissociated, if Pu-DTPA is stable and if the biokinetics of Pu-DTPA excretion is similar to that of DTPA. Further detailed studies of human contamination cases and experimental data about Pu-DTPA kinetics will be needed in order to address these issues. The work will now be continued within a working group of EURADOS.

40 citations

Journal ArticleDOI
TL;DR: The aims and purpose of the Technical Recommendations are described, and how the project is organised is explained.
Abstract: The TECHREC project, funded by the European Commission, will provide Technical Recommendations for Monitoring Individuals for Occupational Intakes of Radionuclides It is expected that the document will be published by the European Commission as a report in its Radiation Protection Series during 2016. The project is coordinated by the European Radiation Dosimetry Group (EURADOS) and is being carried out by members of EURADOS Working Group 7 (Internal Dosimetry). This paper describes the aims and purpose of the Technical Recommendations, and explains how the project is organised.

21 citations

Journal ArticleDOI
TL;DR: A virtual model of a Canberra HPGe detector was produced with the aid of MCNPX and of different point sources, and agreement between theoretical and measured performances in the middle-upper part of the spectrum improved.

19 citations

Journal ArticleDOI
TL;DR: A new model for biokinetics of administered DTPA based on physiological interpretation of 14C-labeled DTPA studies from literature was proposed and was not yet satisfactory since the effects of repeated DTPA administration in a short time period cannot be predicted in a realistic way.
Abstract: Diethylene Triamine Pentaacetic Acid (DTPA) is used for decorporation of plutonium because it is known to be able to enhance its urinary excretion for several days after treatment by forming stable Pu-DTPA complexes. The decorporation prevents accumulation in organs and results in a dosimetric benefit, which is difficult to quantify from bioassay data using existing models. The development of a biokinetic model describing the mechanisms of actinide decorporation by administration of DTPA was initiated as a task in the European COordinated Network on RAdiation Dosimetry (CONRAD). The systemic biokinetic model from Leggett et al. and the biokinetic model for DTPA compounds of International Commission on Radiological Protection Publication 53 were the starting points. A new model for biokinetics of administered DTPA based on physiological interpretation of 14 C-labeled DTPA studies from literature was proposed by the group. Plutonium and DTPA biokinetics were modeled separately. The systems were connected by means of a second order kinetics process describing the chelation process of plutonium atoms and DTPA molecules to Pu-DTPA complexes. It was assumed that chelation only occurs in the blood and in systemic compartment ST0 (representing rapid turnover soft tissues), and that Pu-DTPA complexes and administered forms of DTPA share the same biokinetic behavior. First applications of the CONRAD approach showed that the enhancement of plutonium urinary excretion after administration of DTPA was strongly influenced by the chelation rate constant. Setting it to a high value resulted in a good fit to the observed data. However, the model was not yet satisfactory since the effects of repeated DTPA administration in a short time period cannot be predicted in a realistic way. In order to introduce more physiological knowledge into the model several questions still have to be answered. Further detailed studies of human contamination cases and experimental data will be needed in order to address these issues. The work is now continued within the European Radiation Dosimetry Group, EURADOS.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Radiation dosimetry for radiopharmaceuticals and also CT given the recent proliferation of PET/CT and SPECT/CT is reviewed and the scientific basis for radiation risk estimation in the context of pediatric nuclear medicine is described.
Abstract: The value of pediatric nuclear medicine is well established. Pediatric patients are referred to nuclear medicine from nearly all pediatric specialties including urology, oncology, cardiology, gastroenterology, and orthopedics. Radiation exposure is associated with a potential, small, risk of inducing cancer in the patient later in life and is higher in younger patients. Recently, there has been enhanced interest in exposure to radiation from medical imaging. Thus, it is incumbent on practitioners of pediatric nuclear medicine to have an understanding of dosimetry and radiation risk to communicate effectively with their patients and their families. This article reviews radiation dosimetry for radiopharmaceuticals and also CT given the recent proliferation of PET/CT and SPECT/CT. It also describes the scientific basis for radiation risk estimation in the context of pediatric nuclear medicine. Approaches for effective communication of risk to patients' families are discussed. Lastly, radiation dose reduction in pediatric nuclear medicine is explicated.

124 citations

Journal ArticleDOI
TL;DR: This report is the first in a series of reports replacing Publications 30 and 68 to provide revised dose coefficients for occupational intakes of radionuclides by inhalation and ingestion, and provides some guidance on monitoring programmes and data interpretation.
Abstract: This report is the first in a series of reports replacing Publications 30 and 68 to provide revised dose coefficients for occupational intakes of radionuclides by inhalation and ingestion. The revised dose coefficients have been calculated using the Human Alimentary Tract Model (Publication 100) and a revision of the Human Respiratory Tract Model (Publication 66) that takes account of more recent data. In addition, information is provided on absorption into blood following inhalation and ingestion of different chemical forms of elements and their radioisotopes. In selected cases, it is judged that the data are sufficient to make material-specific recommendations. Revisions have been made to many of the models that describe the systemic biokinetics of radionuclides absorbed into blood, making them more physiologically realistic representations of uptake and retention in organs and tissues, and excretion. The reports in this series provide data for the interpretation of bioassay measurements as well as dose coefficients, replacing Publications 54 and 78. In assessing bioassay data such as measurements of whole-body or organ content, or urinary excretion, assumptions have to be made about the exposure scenario, including the pattern and mode of radionuclide intake, physical and chemical characteristics of the material involved, and the elapsed time between the exposure(s) and measurement. This report provides some guidance on monitoring programmes and data interpretation.

114 citations

Journal ArticleDOI
TL;DR: The general structure of the original IDEAS Guidelines was maintained; however, new procedures were included, e.g. the direct dose assessment method for (3)H or special procedure for wound cases applying the NCRP wound model.
Abstract: Dose assessment after intakes of radionuclides requires application of biokinetic and dosimetric models and assumptions about factors influencing the final result. In 2006, a document giving guidance for such assessment was published, commonly referred to as the IDEAS Guidelines. Following its publication, a working group within the European networks CONRAD and EURADOS was established to improve and update the IDEAS Guidelines. This work resulted in Version 2 of the IDEAS Guidelines, which was published in 2013 in the form of a EURADOS report. The general structure of the original document was maintained; however, new procedures were included, e.g. the direct dose assessment method for (3)H or special procedure for wound cases applying the NCRP wound model. In addition, information was updated and expanded, e.g. data on dietary excretion of U, Th, Ra and Po for urine and faeces or typical and achievable values for detection limits for different bioassay measurement techniques.

75 citations

Journal ArticleDOI
TL;DR: To fully characterize the front dead layer (DL) of an HPGe detector at low photon energy range, its intrinsic efficiency curve was measured using a (241)Am radioactive source in 10-60 keV energy range.

50 citations

Journal ArticleDOI
TL;DR: The 2007 Recommendations introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series and Publications 54, 68, and 78.
Abstract: The 2007 Recommendations (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979a,b, 1980a, 1981, 1988) and Publication 68 (ICRP, 1994b). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1989a, 1997) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2 and its task groups. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 (ICRP, 2015) describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), OIR Part 3 (ICRP, 2017), this current publication, and the final publication in the OIR series (OIR Part 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic models; and data on monitoring techniques for the radioisotopes most commonly encountered in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The online electronic files that accompany the OIR series of publications contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. This fourth publication in the OIR series provides the above data for the following elements: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), actinium (Ac), protactinium (Pa), neptunium (Np), plutonium (Pu), americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), and fermium (Fm).

47 citations