scispace - formally typeset
Search or ask a question
Author

B. C. Monsignori Fossi

Bio: B. C. Monsignori Fossi is an academic researcher from Arcetri Astrophysical Observatory. The author has contributed to research in topics: Solar flare & Coronal mass ejection. The author has an hindex of 10, co-authored 23 publications receiving 2302 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The CHIANTI database as mentioned in this paper is a set of atomic data and transition probabilities necessary to calculate the emission line spectrum of astrophysical plasmas, including atomic energy levels, atomic radiative data such as wavelengths, weighted oscillator strengths and A values, and electron collisional excitation rates.
Abstract: CHIANTI consists of a critically evaluated set of atomic data and transition probabilities necessary to calculate the emission line spectrum of astrophysical plasmas. The data consist of atomic energy levels, atomic radiative data such as wavelengths, weighted oscillator strengths and A values, and electron collisional excitation rates. A set of programs that use these data to calculate the spectrum in a desired wavelength range as a function of temperature and density is also provided. A suite of programs has been developed to carry out plasma diagnostics of astrophysical plasmas. The state-of-the-art contents of the CHIANTI database will be described and some of the most important results obtained from the use of the CHIANTI database will be reviewed.

2,116 citations

Journal ArticleDOI
Abstract: The VUV emission spectra from the solar atmosphere and stellar atmospheres have been intensively studied during the past 25 years with several major space programs In this review we discuss the spectroscopic diagnostic techniques used to study astrophysical plasmas, the atomic processes involved, the recent observations and the plans for future space missions

126 citations

Book ChapterDOI
TL;DR: Le spectre du rayonnement emis par un plasma optiquement mince et chaud (10 4 -10 8 K) determine numeriquement dans la bande spectrale 1-2000 A est presente as mentioned in this paper.
Abstract: Le spectre du rayonnement emis par un plasma optiquement mince et chaud (10 4 -10 8 K) determine numeriquement dans la bande spectrale 1-2000 A est presente

46 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the differential emission measure distribution from the observational data and discuss the methods to evaluate differential emission measurement distribution from XUV line radiation from the sun. But the authors focus on the structure of the inner corona.

25 citations

Journal ArticleDOI
TL;DR: In this paper, the Xray-EUV spectral code for optically thin plasmas has been updated with more accurate atomic data computations, and several lines have been added.
Abstract: The new observations of the Extreme Ultraviolet Explorer Spectrometers on EUVE and the future high resolution observation by Coronal Diagnostic Spectrometer (CDS) and SUMER on SOHO have suggested the revision of the Xray-EUV spectral code of the authors (1990) for optically thin plasmas. More accurate atomic data computations are now available and several lines have been added. Work is in progress to update the Xray-EUV code following the suggestions of the reviewers of the workshop on “Atomic data assessment for SOHO” held in Abingdon (March 1992). Special care is given to the highly ionized iron lines in the EUV spectral region.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Atmospheric Imaging Assembly (AIA) as discussed by the authors provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution.
Abstract: The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe xviii (94 A), Fe viii, xxi (131 A), Fe ix (171 A), Fe xii, xxiv (193 A), Fe xiv (211 A), He ii (304 A), and Fe xvi (335 A). One telescope observes C iv (near 1600 A) and the nearby continuum (1700 A) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6×104 K to 2×107 K. The AIA was launched as a part of NASA’s Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun’s energy is stored and released into the heliosphere and geospace.

4,321 citations

Journal ArticleDOI
TL;DR: The Astrophysical Plasma Emission Code (APEC) as mentioned in this paper uses atomic data from the companion ASTPED database to calculate spectral models for hot plasmas, such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths.
Abstract: New X-ray observatories (Chandra and XMM-Newton) are providing a wealth of high-resolution X-ray spectra in which hydrogen- and helium-like ions are usually strong features. We present results from a new collisional-radiative plasma code, the Astrophysical Plasma Emission Code (APEC), which uses atomic data in the companion Astrophysical Plasma Emission Database (APED) to calculate spectral models for hot plasmas. APED contains the requisite atomic data such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths. We compare the APEC results to other plasma codes for hydrogen- and helium-like diagnostics and test the sensitivity of our results to the number of levels included in the models. We find that dielectronic recombination with hydrogen-like ions into high (n = 6-10) principal quantum numbers affects some helium-like line ratios from low-lying (n = 2) transitions.

2,124 citations

Journal ArticleDOI
TL;DR: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission.
Abstract: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R⊙), two traditional Lyot coronagraphs (COR1: 1.5–4 R⊙ and COR2: 2.5–15 R⊙) and two new designs of heliospheric imagers (HI-1: 15–84 R⊙ and HI-2: 66–318 R⊙). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.

1,781 citations

Journal ArticleDOI
TL;DR: In this paper, a contract for the development and flight of an experiment to study the solar atmosphere with excellent spatial and temporal resolution; and reduction and analysis of the resultant data is presented.
Abstract: This contract is for the development and flight of an experiment to study the solar atmosphere with excellent spatial and temporal resolution; and reduction and analysis of the resultant data. After being launched into a near perfect orbit on 2 April 1998, the spacecraft and instrument remain in good condition and the resultant data are spectacular. Over 6.6 million images have now been taken. Observing highlights this month included several coordinations with CDS, studies of the quiet Sun with SUMER and NMI, coordinations with observers at the SPO Dunn Tower Telescope, and a variety of active region observations. Some of the latter were relatively unique in that they emphasized using the hottest (284A) channel of TRACE. We were informed of the results of the Senior Review Committee's evaluation of all Space Science on-orbit missions and the corresponding fiscal year budgets for TRACE. The budget for FY-02 is modestly less than is being spent in FY-01 and for the years beyond that it is much, much lower.

1,149 citations

Journal ArticleDOI
TL;DR: The EUV Imaging Spectrometer (EIS) as mentioned in this paper is a two-element, normal incidence design with a backside-illuminated, thinned CCD, which has a significantly greater effective area than previous orbiting EUV spectrographs with typical active region 2 -5 s exposure times in the brightest lines.
Abstract: The EUV Imaging Spectrometer (EIS) on Hinode will observe solar corona and upper transition region emission lines in the wavelength ranges 170 – 210 A and 250 – 290 A. The line centroid positions and profile widths will allow plasma velocities and turbulent or non-thermal line broadenings to be measured. We will derive local plasma temperatures and densities from the line intensities. The spectra will allow accurate determination of differential emission measure and element abundances within a variety of corona and transition region structures. These powerful spectroscopic diagnostics will allow identification and characterization of magnetic reconnection and wave propagation processes in the upper solar atmosphere. We will also directly study the detailed evolution and heating of coronal loops. The EIS instrument incorporates a unique two element, normal incidence design. The optics are coated with optimized multilayer coatings. We have selected highly efficient, backside-illuminated, thinned CCDs. These design features result in an instrument that has significantly greater effective area than previous orbiting EUV spectrographs with typical active region 2 – 5 s exposure times in the brightest lines. EIS can scan a field of 6×8.5 arc min with spatial and velocity scales of 1 arc sec and 25 km s−1 per pixel. The instrument design, its absolute calibration, and performance are described in detail in this paper. EIS will be used along with the Solar Optical Telescope (SOT) and the X-ray Telescope (XRT) for a wide range of studies of the solar atmosphere.

1,050 citations