scispace - formally typeset
Search or ask a question
Author

B. C. Regan

Bio: B. C. Regan is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Scanning transmission electron microscopy & Plasmon. The author has an hindex of 25, co-authored 120 publications receiving 3936 citations. Previous affiliations of B. C. Regan include Lawrence Berkeley National Laboratory & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: The result of the most recent search for T violation in 205Tl is presented, which is interpreted in terms of an electric dipole moment of the electron d(e), which yields an upper limit /d(e)/ < or = 1.6x10(-27)e cm with 90% confidence.
Abstract: We present the result of our most recent search for T-violation in 205Tl, which is interpreted in terms of an electric dipole moment of the electron de. We find de = (6.9 plus/minus 7.4) times 10{sup -28} e cm. The present apparatus is a major upgrade of the atomic beam magnetic resonance device used to set the previous limit on de.

655 citations

Journal ArticleDOI
TL;DR: This manuscript describes the most recommendable methodologies for the fabrication, characterization, and simulation of RS devices, as well as the proper methods to display the data obtained.
Abstract: Resistive switching (RS) is an interesting property shown by some materials systems that, especially during the last decade, has gained a lot of interest for the fabrication of electronic devices, with electronic nonvolatile memories being those that have received the most attention. The presence and quality of the RS phenomenon in a materials system can be studied using different prototype cells, performing different experiments, displaying different figures of merit, and developing different computational analyses. Therefore, the real usefulness and impact of the findings presented in each study for the RS technology will be also different. This manuscript describes the most recommendable methodologies for the fabrication, characterization, and simulation of RS devices, as well as the proper methods to display the data obtained. The idea is to help the scientific community to evaluate the real usefulness and impact of an RS study for the development of RS technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

441 citations

Journal ArticleDOI
22 Mar 2012-Nature
TL;DR: The experimental demonstration of a general electron tomography method that achieves atomic-scale resolution without initial assumptions about the sample structure is reported, and it is anticipated that this general method can be applied not only to determine the 3D structure of nanomaterials at atomic- scale resolution, but also to improve the spatial resolution and image quality in other tomography fields.
Abstract: Transmission electron microscopy is a powerful imaging tool that has found broad application in materials science, nanoscience and biology. With the introduction of aberration-corrected electron lenses, both the spatial resolution and the image quality in transmission electron microscopy have been significantly improved and resolution below 0.5 angstroms has been demonstrated. To reveal the three-dimensional (3D) structure of thin samples, electron tomography is the method of choice, with cubic-nanometre resolution currently achievable. Discrete tomography has recently been used to generate a 3D atomic reconstruction of a silver nanoparticle two to three nanometres in diameter, but this statistical method assumes prior knowledge of the particle's lattice structure and requires that the atoms fit rigidly on that lattice. Here we report the experimental demonstration of a general electron tomography method that achieves atomic-scale resolution without initial assumptions about the sample structure. By combining a novel projection alignment and tomographic reconstruction method with scanning transmission electron microscopy, we have determined the 3D structure of an approximately ten-nanometre gold nanoparticle at 2.4-angstrom resolution. Although we cannot definitively locate all of the atoms inside the nanoparticle, individual atoms are observed in some regions of the particle and several grains are identified in three dimensions. The 3D surface morphology and internal lattice structure revealed are consistent with a distorted icosahedral multiply twinned particle. We anticipate that this general method can be applied not only to determine the 3D structure of nanomaterials at atomic-scale resolution, but also to improve the spatial resolution and image quality in other tomography fields.

379 citations

Journal ArticleDOI
04 Apr 2013-Nature
TL;DR: 3D imaging of dislocations in materials at atomic resolution by electron tomography is reported, and nearly all the atoms in a multiply twinned platinum nanoparticle are observed by applying 3D Fourier filtering together with equal-slope tomographic reconstruction.
Abstract: Dislocations and their interactions strongly influence many material properties, ranging from the strength of metals and alloys to the efficiency of light-emitting diodes and laser diodes. Several experimental methods can be used to visualize dislocations. Transmission electron microscopy (TEM) has long been used to image dislocations in materials, and high-resolution electron microscopy can reveal dislocation core structures in high detail, particularly in annular dark-field mode. A TEM image, however, represents a two-dimensional projection of a three-dimensional (3D) object (although stereo TEM provides limited information about 3D dislocations). X-ray topography can image dislocations in three dimensions, but with reduced resolution. Using weak-beam dark-field TEM and scanning TEM, electron tomography has been used to image 3D dislocations at a resolution of about five nanometres (refs 15, 16). Atom probe tomography can offer higher-resolution 3D characterization of dislocations, but requires needle-shaped samples and can detect only about 60 per cent of the atoms in a sample. Here we report 3D imaging of dislocations in materials at atomic resolution by electron tomography. By applying 3D Fourier filtering together with equal-slope tomographic reconstruction, we observe nearly all the atoms in a multiply twinned platinum nanoparticle. We observed atomic steps at 3D twin boundaries and imaged the 3D core structure of edge and screw dislocations at atomic resolution. These dislocations and the atomic steps at the twin boundaries, which appear to be stress-relief mechanisms, are not visible in conventional two-dimensional projections. The ability to image 3D disordered structures such as dislocations at atomic resolution is expected to find applications in materials science, nanoscience, solid-state physics and chemistry.

345 citations

Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: In this article, a controllable, reversible atomic scale mass transport along carbon nanotubes, using indium metal as the prototype transport species, is described. But the authors do not consider the use of carbon-nippons as a transport species.
Abstract: The development of manipulation tools that are not too ‘fat’ or too ‘sticky’ for atomic scale assembly is an important challenge facing nanotechnology1. Impressive nanofabrication capabilities have been demonstrated with scanning probe manipulation of atoms2,3,4,5 and molecules4,6 on clean surfaces. However, as fabrication tools, both scanning tunnelling and atomic force microscopes suffer from a loading deficiency: although they can manipulate atoms already present, they cannot efficiently deliver atoms to the work area. Carbon nanotubes, with their hollow cores and large aspect ratios, have been suggested7,8 as possible conduits for nanoscale amounts of material. Already much effort has been devoted to the filling of nanotubes8,9,10,11 and the application of such techniques12,13. Furthermore, carbon nanotubes have been used as probes in scanning probe microscopy14,15,16. If the atomic placement and manipulation capability already demonstrated by scanning probe microscopy could be combined with a nanotube delivery system, a formidable nanoassembly tool would result. Here we report the achievement of controllable, reversible atomic scale mass transport along carbon nanotubes, using indium metal as the prototype transport species. This transport process has similarities to conventional electromigration, a phenomenon of critical importance to the semiconductor industry17,18.

283 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the pseudocapacitance properties of transition metal oxides have been investigated and a review of the most relevant pseudo-capacitive materials in aqueous and non-aqueous electrolytes is presented.
Abstract: Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge–discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.

3,930 citations

Journal ArticleDOI
TL;DR: The exciting successes in taming molecular-level movement thus far are outlined, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion are highlighted.
Abstract: The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.

2,301 citations

01 Jan 2011

2,117 citations