scispace - formally typeset
Search or ask a question
Author

B Drew

Bio: B Drew is an academic researcher from University of Bath. The author has contributed to research in topics: Renewable energy & Line (geometry). The author has an hindex of 1, co-authored 1 publications receiving 832 citations.

Papers
More filters
Journal ArticleDOI
01 Dec 2009
TL;DR: In this paper, a review of wave energy converter (WEC) technology is presented, focusing on work being undertaken within the United Kingdom, and some of the control strategies to enhance the efficiency of point absorber-type WECs.
Abstract: Ocean waves are a huge, largely untapped energy resource, and the potential for extracting energy from waves is considerable. Research in this area is driven by the need to meet renewable energy targets, but is relatively immature compared to other renewable energy technologies. This review introduces the general status of wave energy and evaluates the device types that represent current wave energy converter (WEC) technology, particularly focusing on work being undertaken within the United Kingdom. The possible power take-off systems are identified, followed by a consideration of some of the control strategies to enhance the efficiency of point absorber-type WECs. There is a lack of convergence on the best method of extracting energy from the waves and, although previous innovation has generally focused on the concept and design of the primary interface, questions arise concerning how best to optimize the powertrain. This article concludes with some suggestions of future developments.

992 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of wave energy converters and air turbines can be found in this paper, together with a survey of theoretical, numerical and experimental modelling techniques of OWC converters.

594 citations

Journal ArticleDOI
TL;DR: In this article, a complete analysis of the wave energy technology is presented, starting with the characterisation of this global resource in which the most suitable places to be exploited are showed, and the classification of the different types of wave energy converters in according to several features.
Abstract: The wave energy is having more and more interest and support as a promising renewable resource to replace part of the energy supply, although it is still immature compared to other renewable technologies. This work presents a complete analysis of the wave energy technology, starting with the characterisation of this global resource in which the most suitable places to be exploited are showed, and the classification of the different types of wave energy converters in according to several features. It is also described in detail each of the stages that are part in the energy conversion, that is, from the capture of the energy from the waves to the extraction of a proper electrical signal to be injected to the grid. Likewise, existing offshore energy transmission alternatives and possible layouts are described.

553 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive classification of the synergies between offshore wind and wave energy, the different options for combining wave and offshore wind energy, and the technological aspects is presented.
Abstract: The sustainable development of the offshore wind and wave energy sectors requires optimising the exploitation of the resources, and it is in relation to this and the shared challenge for both industries to reduce their costs that the option of integrating offshore wind and wave energy arose during the past decade. The relevant aspects of this integration are addressed in this work: the synergies between offshore wind and wave energy, the different options for combining wave and offshore wind energy, and the technological aspects. Because of the novelty of combined wave and offshore wind systems, a comprehensive classification was lacking. This is presented in this work based on the degree of integration between the technologies, and the type of substructure. This classification forms the basis for the review of the different concepts. This review is complemented with specific sections on the state of the art of two particularly challenging aspects, namely the substructures and the wave energy conversion.

407 citations

Journal ArticleDOI
TL;DR: In this paper, a wave energy has been shown to have some favorable variability properties (a perennial issue with many renewables, especially wind), especially when combined with wind energy, and wave energy can be used to fulfill future increasing energy needs.
Abstract: With the recent sharp increases in the price of oil, issues of security of supply, and pressure to honor greenhouse gas emission limits (e.g., the Kyoto protocol), much attention has turned to renewable energy sources to fulfill future increasing energy needs. Wind energy, now a mature technology, has had considerable proliferation, with other sources, such as biomass, solar, and tidal, enjoying somewhat less deployment. Waves provide previously untapped energy potential, and wave energy has been shown to have some favorable variability properties (a perennial issue with many renewables, especially wind), especially when combined with wind energy [1].

284 citations

Journal ArticleDOI
TL;DR: In this paper, the authors bring the latest status on integration of wave energy device with other marine facilities, which is the breakwater structure that may possibly aid to cost sharing, and show that the integration opens up a new dimension to acknowledge the technology harnessing ocean wave, especially for the Asian countries experiencing medium wave condition.
Abstract: One of the most abundant energy sources exists in this world is the ocean wave energy. By far, it has shown to be the most clean, renewable, predicted energy and has raised the potential to compete with the current use of non-renewable energy sources. Recent research conducted on wave energy invention has opened a new dimension to slowly reduce the dependency on fossil fuel by introducing new technology on the renewable world but relatively lacking in economical aspect. This review brings the latest status on integration of wave energy device with other marine facilities, which is the breakwater structure that may possibly aid to cost sharing. Most researches done on this field highlighted countries experiencing rough sea condition and focused less on countries with medium wave condition as faced by the Asian continent. The potential for energy extraction and wave dissipation for medium wave condition will be discussed in this review by considering several aspects including reliability, effectiveness and performance. Finally, this review shows that the integration opens up a new dimension to acknowledge the technology harnessing ocean wave, especially for the Asian countries experiencing medium wave condition.

267 citations