scispace - formally typeset
Search or ask a question
Author

B. Engeser

Bio: B. Engeser is an academic researcher from University of Innsbruck. The author has contributed to research in topics: Bound state & Feshbach resonance. The author has an hindex of 7, co-authored 11 publications receiving 1179 citations.

Papers
More filters
Journal ArticleDOI
16 Mar 2006-Nature
TL;DR: In this article, the Efimov trimer state was shown to exist in an ultracold gas of caesium atoms and its signature was observed as a giant three-body recombination loss when the strength of the two-body interaction is varied.
Abstract: In the bizarre world of quantum physics, three interacting particles can form a loosely bound system even if the two-particle attraction is too weak to allow for the binding of a pair. This exotic trimer state was predicted 35 years ago by Russian physicist Vitali Efimov, who found a remarkable and counterintuitive solution to the notoriously difficult quantum-mechanical three-body problem. Efimov's well known result was a landmark in theoretical few-body physics, but until now these exotic states had not been demonstrated experimentally. Now that has been achieved, in an ultracold gas of caesium atoms. The existence of this gas confirms key predictions and opens up few-body quantum systems to further experiment. The first experimental observation of Efimov's prediction confirms key theoretical predictions and represents a starting point from which to explore the universal properties of resonantly interacting few-body systems. Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction1,2 of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics3,4,5,6,7,8. However, the observation of Efimov quantum states has remained an elusive goal3,5. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss9,10 when the strength of the two-body interaction is varied. We also detect a minimum9,11,12 in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems7. While Feshbach resonances13,14 have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter15 to the world of few-body quantum phenomena.

884 citations

Journal ArticleDOI
TL;DR: It is reported on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap and expansion measurements for the tightly confined vertical motion show energies well below the vibrational energy quantum.
Abstract: We report on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap. The condensate is produced a few microm above a dielectric surface on an evanescent-wave atom mirror. After evaporative cooling by all-optical means, expansion measurements for the tightly confined vertical motion show energies well below the vibrational energy quantum. The presence of a condensate is observed in two independent ways by a magnetically induced collapse at negative scattering length and by measurements of the horizontal expansion.

183 citations

Journal ArticleDOI
TL;DR: In this article, an analytic model was proposed to calculate the atomic scattering length near a Feshbach resonance from data on the molecular binding energy using magnetic-field modulation spectroscopy in a range where one broad and two narrow resonances overlap.
Abstract: We present an analytic model to calculate the atomic scattering length near a Feshbach resonance from data on the molecular binding energy. Our approach considers finite-range square-well potentials and can be applied near broad, narrow, or even overlapping Feshbach resonances. We test our model on ${\mathrm{Cs}}_{2}$ Feshbach molecules. We measure the binding energy using magnetic-field modulation spectroscopy in a range where one broad and two narrow Feshbach resonances overlap. From the data we accurately determine the Cs atomic scattering length and the positions and widths of two particular resonances.

86 citations

Journal ArticleDOI
TL;DR: In this paper, a dense gas of cesium atoms at the crossover to two dimensions is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves.
Abstract: A dense gas of cesium atoms at the crossover to two dimensions is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as 100 nK are reached with 20,000 atoms at a phase-space density close to 0.1. The lowest quantum state in the tightly confined direction is populated by more than 60%. The system provides atoms at a mean distance from the surface as low as 1 microm, and offers intriguing prospects for future experiments on degenerate quantum gases in two dimensions.

61 citations

Journal ArticleDOI
TL;DR: In this paper, a dense gas of cesium atoms at the crossover to two-dimensionalality is prepared in a highlyanisotropic surface trap that is realized with two evanescent light waves.
Abstract: Institut fu¨r Experimentalphysik, Universit¨at Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria(Dated: August 16, 2002)A dense gas of cesium atoms at the crossover to two-dimensionality is prepared in a highlyanisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as100nK are reached with 20.000 atoms at a phase-space density close to 0.1. The lowest quantumstate in the tightly confined direction is populated by more than 60%. The system offers intriguingprospects for future experiments on degenerate quantum gases in two dimensions.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases and have found numerous experimental applications, opening up the way to important breakthroughs as mentioned in this paper.
Abstract: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

2,642 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent developments in the physics of ultracold atomic and molecular gases in optical lattices and show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics.
Abstract: We review recent developments in the physics of ultracold atomic and molecular gases in optical lattices. Such systems are nearly perfect realisations of various kinds of Hubbard models, and as such may very well serve to mimic condensed matter phenomena. We show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics. After a short presentation of the models and the methods of treatment of such systems, we discuss in detail, which challenges of condensed matter physics can be addressed with (i) disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii) spinor lattice gases, (iv) lattice gases in “artificial” magnetic fields, and, last but not least, (v) quantum information processing in lattice gases. For completeness, also some recent progress related to the above topics with trapped cold gases will be discussed. Motto: There are more things in heaven and earth, Horatio, Than are dreamt of in your...

1,535 citations