scispace - formally typeset
Search or ask a question
Author

B. G. Lenardo

Bio: B. G. Lenardo is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Physics & Computer science. The author has an hindex of 3, co-authored 3 publications receiving 2233 citations.
Topics: Physics, Computer science, Dark matter, WIMP, Neutrino

Papers
More filters
Journal ArticleDOI
D. S. Akerib1, S. Alsum2, Henrique Araujo3, X. Bai4, A. J. Bailey3, J. Balajthy5, P. Beltrame, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, R. Bramante1, P. Brás8, D. Byram9, Sidney Cahn10, M. C. Carmona-Benitez11, C. Chan12, A.A. Chiller9, C. Chiller9, A. Currie3, J. E. Cutter13, T. J. R. Davison, A. Dobi14, J. E. Y. Dobson15, E. Druszkiewicz16, B. N. Edwards10, C. H. Faham14, S. Fiorucci12, R. J. Gaitskell12, V. M. Gehman14, C. Ghag15, K.R. Gibson1, M. G. D. Gilchriese14, C. R. Hall5, M. Hanhardt4, S. J. Haselschwardt11, S. A. Hertel6, D. P. Hogan6, M. Horn6, D. Q. Huang12, C. M. Ignarra17, M. Ihm6, R.G. Jacobsen6, W. Ji1, K. Kamdin6, K. Kazkaz7, D. Khaitan16, R. Knoche5, N.A. Larsen10, C. Lee1, B. G. Lenardo7, K. T. Lesko14, A. Lindote8, M.I. Lopes8, A. Manalaysay13, R. L. Mannino18, M. F. Marzioni, Daniel McKinsey6, D. M. Mei9, J. Mock19, M. Moongweluwan16, J. A. Morad13, A. St. J. Murphy20, C. Nehrkorn11, H. N. Nelson11, F. Neves8, K. O’Sullivan6, K. C. Oliver-Mallory6, K. J. Palladino17, E. K. Pease6, P. Phelps1, L. Reichhart15, C. Rhyne12, S. Shaw15, T. A. Shutt1, C. Silva8, M. Solmaz11, V. N. Solovov8, P. Sorensen14, S. Stephenson13, T. J. Sumner3, Matthew Szydagis19, D. J. Taylor, W. C. Taylor12, B. P. Tennyson10, P. A. Terman18, D. R. Tiedt4, W. H. To1, Mani Tripathi13, L. Tvrznikova6, S. Uvarov13, J.R. Verbus12, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell14, F.L.H. Wolfs16, Jilei Xu7, K. Yazdani3, Sarah Young19, Chao Zhang9 
TL;DR: This search yields no evidence of WIMP nuclear recoils and constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon experiment are reported.
Abstract: We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c^{-2}, WIMP-nucleon spin-independent cross sections above 2.2×10^{-46} cm^{2} are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10^{-46} cm^{2} at 50 GeV c^{-2}.

1,844 citations

Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, P. Beltrame5, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, A. W. Bradley1, R. Bramante1, Sidney Cahn6, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A.A. Chiller10, C. Chiller10, A. Currie2, J. E. Cutter11, T. J. R. Davison5, L. de Viveiros12, A. Dobi13, J. E. Y. Dobson14, E. Druszkiewicz15, B. N. Edwards6, C. H. Faham13, S. Fiorucci13, R. J. Gaitskell9, V. M. Gehman13, C. Ghag14, K.R. Gibson1, M. G. D. Gilchriese13, C. R. Hall4, M. Hanhardt3, S. J. Haselschwardt8, S. A. Hertel6, D. P. Hogan16, M. Horn6, D. Q. Huang9, C. M. Ignarra17, M. Ihm13, R.G. Jacobsen13, W. Ji1, K. Kazkaz7, D. Khaitan15, R. Knoche4, N.A. Larsen6, C. Lee1, B. G. Lenardo7, K. T. Lesko13, A. Lindote12, M.I. Lopes12, D.C. Malling9, A. Manalaysay11, R. L. Mannino18, M. F. Marzioni5, Daniel McKinsey6, D. M. Mei10, J. Mock19, M. Moongweluwan15, J. A. Morad11, A. St. J. Murphy5, C. Nehrkorn8, H. N. Nelson8, F. Neves12, K. O'Sullivan6, K. C. Oliver-Mallory13, R. A. Ott11, K. J. Palladino17, M. Pangilinan9, E. K. Pease6, P. Phelps1, L. Reichhart14, C. Rhyne9, S. Shaw14, T. A. Shutt1, C. Silva12, V. N. Solovov12, P. Sorensen13, S. Stephenson11, T. J. Sumner2, Matthew Szydagis19, D. J. Taylor, W. C. Taylor9, B. P. Tennyson6, P. A. Terman18, D. R. Tiedt3, W. H. To1, Mani Tripathi11, L. Tvrznikova6, S. Uvarov11, J.R. Verbus9, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell8, F.L.H. Wolfs15, K. Yazdani2, Sarah Young19, Chao Zhang10 
TL;DR: This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV.
Abstract: We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×10^{4} kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c^{-2}, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c^{-2} WIMP mass.

460 citations

Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, P. Beltrame5, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, A. W. Bradley1, R. Bramante1, Sidney Cahn6, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A.A. Chiller10, C. Chiller10, A. Currie2, J. E. Cutter11, T. J. R. Davison5, L. de Viveiros12, A. Dobi13, J. E. Y. Dobson14, E. Druszkiewicz15, B. N. Edwards6, C. H. Faham13, S. Fiorucci13, R. J. Gaitskell9, V. M. Gehman13, C. Ghag14, K.R. Gibson1, M. G. D. Gilchriese13, C. R. Hall4, M. Hanhardt3, S. J. Haselschwardt8, S. A. Hertel6, D. P. Hogan16, M. Horn6, D. Q. Huang9, C. M. Ignarra17, M. Ihm13, R.G. Jacobsen13, W. Ji1, K. Kazkaz7, D. Khaitan15, R. Knoche4, N.A. Larsen6, C. Lee1, B. G. Lenardo7, K. T. Lesko13, A. Lindote12, M.I. Lopes12, D.C. Malling9, A. Manalaysay11, R. L. Mannino18, M. F. Marzioni5, Daniel McKinsey6, D. M. Mei10, J. Mock19, M. Moongweluwan15, J. A. Morad11, A. St. J. Murphy5, C. Nehrkorn8, H. N. Nelson8, F. Neves12, K. O'Sullivan6, K. C. Oliver-Mallory13, R. A. Ott11, K. J. Palladino17, M. Pangilinan9, E. K. Pease6, P. Phelps1, L. Reichhart14, C. Rhyne9, S. Shaw14, T. A. Shutt1, C. Silva12, V. N. Solovov12, P. Sorensen13, S. Stephenson11, T. J. Sumner2, Matthew Szydagis19, D. J. Taylor, W. C. Taylor9, B. P. Tennyson6, P. A. Terman18, D. R. Tiedt3, W. H. To1, Mani Tripathi11, L. Tvrznikova6, S. Uvarov11, J.R. Verbus9, R. C. Webb18, J. T. White18, T. J. Whitis1, Michael S. Witherell8, F.L.H. Wolfs15, K. Yazdani2, Sarah Young19, Chao Zhang10 
TL;DR: The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Abstract: We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4} kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41} cm^{2} (σ_{p}=2.9×10^{-39} cm^{2}) at 33 GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

195 citations

ReportDOI
14 Mar 2022
TL;DR: Coherent elastic neutrino-nucleus scattering (CEνNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle as discussed by the authors .
Abstract: Coherent elastic neutrino-nucleus scattering (CEνNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEνNS has long proven difficult to detect, since the deposited energy into the nucleus is ∼ keV. In 2017, the COHERENT collaboration announced the detection of CEνNS using a stopped-pion source with CsI detectors, followed up the detection of CEνNS using an Ar target. The detection of CEνNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEνNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEνNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics.

25 citations

Journal ArticleDOI
TL;DR: This technique can be exploited by future dark matter experiments to make use of additional information, reduce computational resources needed for signal searches and simulations, and make inclusion of physical nuisance parameters in signal searches tractable.
Abstract: We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its flexibility to capture non-linear correlations shape variable alongside more traditional inputs, such as light and charge signal strengths. This technique can be exploited by future dark matter experiments to make use of additional information, reduce computational resources needed for signal searches and simulations, and make inclusion of physical nuisance parameters in fits tractable.

7 citations


Cited by
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi13, F. Toschi3, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini, M. Alfonsi3, F. D. Amaro4, M. Anthony1, F. Arneodo5, P. Barrow6, Laura Baudis6, Boris Bauermeister7, M. L. Benabderrahmane5, T. Berger8, P. A. Breur2, April S. Brown2, Ethan Brown8, S. Bruenner9, Giacomo Bruno, Ran Budnik10, L. Bütikofer11, J. Calvén7, João Cardoso4, M. Cervantes12, D. Cichon9, D. Coderre11, Auke-Pieter Colijn2, Jan Conrad7, Jean-Pierre Cussonneau13, M. P. Decowski2, P. de Perio1, P. Di Gangi14, A. Di Giovanni5, Sara Diglio13, G. Eurin9, J. Fei15, A. D. Ferella7, A. Fieguth16, W. Fulgione, A. Gallo Rosso, Michelle Galloway6, F. Gao1, M. Garbini14, Robert Gardner17, C. Geis3, Luke Goetzke1, L. Grandi17, Z. Greene1, C. Grignon3, C. Hasterok9, E. Hogenbirk2, J. Howlett1, R. Itay10, B. Kaminsky11, Shingo Kazama6, G. Kessler6, A. Kish6, H. Landsman10, R. F. Lang12, D. Lellouch10, L. Levinson10, Qing Lin1, Sebastian Lindemann9, Manfred Lindner9, F. Lombardi15, J. A. M. Lopes4, A. Manfredini10, I. Mariș5, T. Marrodán Undagoitia9, Julien Masbou13, F. V. Massoli14, D. Masson12, D. Mayani6, M. Messina1, K. Micheneau13, A. Molinario, K. Morâ7, M. Murra16, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack3, P. Pakarha6, Bart Pelssers7, R. Persiani13, F. Piastra6, J. Pienaar12, V. Pizzella9, M.-C. Piro8, Guillaume Plante1, N. Priel10, L. Rauch9, S. Reichard6, C. Reuter12, B. Riedel17, A. Rizzo1, S. Rosendahl16, N. Rupp9, R. Saldanha17, J.M.F. dos Santos4, Gabriella Sartorelli14, M. Scheibelhut3, S. Schindler3, J. Schreiner9, Marc Schumann11, L. Scotto Lavina19, M. Selvi14, P. Shagin18, E. Shockley17, Manuel Gameiro da Silva4, H. Simgen9, M. V. Sivers11, A. Stein20, S. Thapa17, Dominique Thers13, A. Tiseni2, Gian Carlo Trinchero, C. Tunnell17, M. Vargas16, N. Upole17, Hui Wang20, Zirui Wang, Yuehuan Wei6, Ch. Weinheimer16, J. Wulf6, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: The first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy, are reported and a profile likelihood analysis shows that the data are consistent with the background-only hypothesis.
Abstract: We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind The blinded search used 342 live days of data acquired between November 2016 and January 2017 Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (193±025)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector A profile likelihood analysis shows that the data are consistent with the background-only hypothesis We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c2, with a minimum of 77×10-47 cm2 for 35-GeV/c2 WIMPs at 90% CL

1,061 citations

Journal ArticleDOI
TL;DR: A review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities, and Collider and Indirect Detection will not be neglected when they represent a complementary probe.
Abstract: Weakly Interacting Massive Particles (WIMPs) are among the best-motivated dark matter candidates. No conclusive signal, despite an extensive search program that combines, often in a complementary way, direct, indirect, and collider probes, has been detected so far. This situation might change in near future due to the advent of one/multi-TON Direct Detection experiments. We thus, find it timely to provide a review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities. Collider and Indirect Detection, nevertheless, will not be neglected when they represent a complementary probe.

772 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, F. D. Amaro5, M. Anthony1, Lior Arazi6, F. Arneodo7, C. Balan5, P. Barrow8, Laura Baudis8, Boris Bauermeister9, Boris Bauermeister4, T. Berger10, P. A. Breur2, Amos Breskin6, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno12, Ran Budnik6, L. Bütikofer13, João Cardoso5, M. Cervantes14, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, H. Contreras1, Jean-Pierre Cussonneau15, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, E. Duchovni6, S. Fattori4, A. D. Ferella9, A. Fieguth12, D. Franco8, W. Fulgione, Michelle Galloway8, M. Garbini3, C. Geis4, Luke Goetzke1, Z. Greene1, C. Grignon4, E. K. U. Gross6, W. Hampel11, C. Hasterok11, R. Itay6, Florian Kaether11, B. Kaminsky13, G. Kessler8, A. Kish8, H. Landsman6, R. F. Lang14, D. Lellouch6, L. Levinson6, M. Le Calloch15, C. Levy10, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes5, A. Lyashenko16, S. Macmullin14, A. Manfredini6, T. Marrodán Undagoitia11, Julien Masbou15, F. V. Massoli3, D. Mayani8, A. J. Melgarejo Fernandez1, Y. Meng16, M. Messina1, K. Micheneau15, B. Miguez, A. Molinario, M. Murra12, J. Naganoma17, Uwe Oberlack4, S. E. A. Orrigo5, P. Pakarha8, Bart Pelssers9, R. Persiani15, F. Piastra8, J. Pienaar14, Guillaume Plante1, N. Priel6, L. Rauch11, S. Reichard14, C. Reuter14, A. Rizzo1, S. Rosendahl12, N. Rupp11, J.M.F. dos Santos5, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, Jochen Schreiner11, Marc Schumann13, L. Scotto Lavina15, M. Selvi3, P. Shagin17, Hardy Simgen11, A. Stein16, D. Thers15, A. Tiseni2, G. C. Trinchero, C. Tunnell2, M. von Sivers13, R. Wall17, Hui Wang16, M. Weber1, Yuehuan Wei8, Ch. Weinheimer12, J. Wulf8, Yanxi Zhang1 
TL;DR: In this article, the expected sensitivity of the Xenon1T experiment to the spin-independent WIMP-nucleon interaction cross section was investigated based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.
Abstract: The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10(−)(4) (kg·day·keV)(−)(1), mainly due to the decay of (222)Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)(−)(1) from radiogenic neutrons, (1.8 ± 0.3) · 10(−)(2) (t·y)(−)(1) from coherent scattering of neutrinos, and less than 0.01 (t·y)(−)(1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script L(eff), which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10(−)(47) cm(2) at m(χ) = 50 GeV/c(2).

580 citations

Journal ArticleDOI
Jelle Aalbers1, F. Agostini2, M. Alfonsi3, F. D. Amaro4, Claude Amsler5, Elena Aprile6, Lior Arazi7, F. Arneodo8, P. Barrow9, Laura Baudis1, Laura Baudis9, M. L. Benabderrahmane8, T. Berger10, B. Beskers3, Amos Breskin7, P. A. Breur1, April S. Brown1, Ethan Brown10, S. Bruenner11, Giacomo Bruno, Ran Budnik7, Lukas Bütikofer5, J. Calvén12, João Cardoso4, D. Cichon11, D. Coderre5, Auke-Pieter Colijn1, Jan Conrad12, Jean-Pierre Cussonneau13, M. P. Decowski1, Sara Diglio13, Guido Drexlin14, Ehud Duchovni7, E. Erdal7, G. Eurin11, A. D. Ferella12, A. Fieguth15, W. Fulgione, A. Gallo Rosso, P. Di Gangi2, A. Di Giovanni8, Michelle Galloway9, M. Garbini2, C. Geis3, F. Glueck14, L. Grandi16, Z. Greene6, C. Grignon3, C. Hasterok11, Volker Hannen15, E. Hogenbirk1, J. Howlett6, D. Hilk14, C. Hils3, A. James9, B. Kaminsky5, Shingo Kazama9, Benjamin Kilminster9, A. Kish9, Lawrence M. Krauss17, H. Landsman7, R. F. Lang18, Qing Lin6, F. L. Linde1, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes4, Marrodan T. Undagoitia11, Julien Masbou13, F. V. Massoli2, D. Mayani9, M. Messina6, K. Micheneau13, A. Molinario, K. Morå12, E. Morteau13, M. Murra15, J. Naganoma19, Jayden L. Newstead17, Kaixuan Ni20, Uwe Oberlack3, P. Pakarha9, Bart Pelssers12, P. de Perio6, R. Persiani13, F. Piastra9, M.-C. Piro10, G. Plante6, L. Rauch11, S. Reichard18, A. Rizzo6, N. Rupp11, J.M.F. dos Santos4, G. Sartorelli2, M. Scheibelhut3, S. Schindler3, Marc Schumann5, Marc Schumann21, Jochen Schreiner11, L. Scotto Lavina13, M. Selvi2, P. Shagin19, Miguel Silva4, Hardy Simgen11, P. Sissol3, M. von Sivers5, D. Thers13, J. Thurn22, A. Tiseni1, Roberto Trotta23, C. Tunnell1, Kathrin Valerius14, M. Vargas15, Hongwei Wang24, Yuehuan Wei9, Ch. Weinheimer15, T. Wester22, J. Wulf9, Yanxi Zhang6, T. Zhu9, Kai Zuber22 
TL;DR: DARk matter WImp search with liquid xenoN (DARWIN) as mentioned in this paper is an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core.
Abstract: DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary g ...

553 citations