scispace - formally typeset
Search or ask a question
Author

B. J. Bichon

Bio: B. J. Bichon is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Cumulative distribution function & Random variable. The author has an hindex of 1, co-authored 1 publications receiving 581 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper develops an efficient reliability analysis method that accurately characterizes the limit state throughout the random variable space and is both accurate for any arbitrarily shaped limit state and computationally efficient even for expensive response functions.
Abstract: Many engineering applications are characterized by implicit response functions that are expensive to evaluate and sometimes nonlinear in their behavior, making reliability analysis difficult. This paper develops an efficient reliability analysis method that accurately characterizes the limit state throughout the random variable space. The method begins with a Gaussian process model built from a very small number of samples, and then adaptively chooses where to generate subsequent samples to ensure that the model is accurate in the vicinity of the limit state. The resulting Gaussian process model is then sampled using multimodal adaptive importance sampling to calculate the probability of exceeding (or failing to exceed) the response level of interest. By locating multiple points on or near the limit state, more complex and nonlinear limit states can be modeled, leading to more accurate probability integration. By concentrating the samples in the area where accuracy is important (i.e., in the vicinity of the limit state), only a small number of true function evaluations are required to build a quality surrogate model. The resulting method is both accurate for any arbitrarily shaped limit state and computationally efficient even for expensive response functions. This new method is applied to a collection of example problems including one that analyzes the reliability of a microelectromechanical system device that current available methods have difficulty solving either accurately or efficiently.

804 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An iterative approach based on Monte Carlo Simulation and Kriging metamodel to assess the reliability of structures in a more efficient way and is shown to be very efficient as the probability of failure obtained with AK-MCS is very accurate and this, for only a small number of calls to the performance function.

1,234 citations

ReportDOI
01 May 2010
TL;DR: This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.
Abstract: The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications. DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

757 citations

Journal ArticleDOI
TL;DR: An original and easily implementable method called AK-IS for active learning and Kriging-based Importance Sampling, based on the AK-MCS algorithm, that enables the correction or validation of the FORM approximation with only a very few mechanical model computations.

458 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose to use a Kriging surrogate for the performance function as a means to build a quasi-optimal importance sampling density, which can be applied to analytical and finite element reliability problems and proves efficient up to 100 basic random variables.

389 citations

Journal ArticleDOI
TL;DR: The aim of the present paper is to develop a strategy for solving reliability-based design optimization (RBDO) problems that remains applicable when the performance models are expensive to evaluate.
Abstract: The aim of the present paper is to develop a strategy for solving reliability-based design optimization (RBDO) problems that remains applicable when the performance models are expensive to evaluate. Starting with the premise that simulation-based approaches are not affordable for such problems, and that the most-probable-failure-point-based approaches do not permit to quantify the error on the estimation of the failure probability, an approach based on both metamodels and advanced simulation techniques is explored. The kriging metamodeling technique is chosen in order to surrogate the performance functions because it allows one to genuinely quantify the surrogate error. The surrogate error onto the limit-state surfaces is propagated to the failure probabilities estimates in order to provide an empirical error measure. This error is then sequentially reduced by means of a population-based adaptive refinement technique until the kriging surrogates are accurate enough for reliability analysis. This original refinement strategy makes it possible to add several observations in the design of experiments at the same time. Reliability and reliability sensitivity analyses are performed by means of the subset simulation technique for the sake of numerical efficiency. The adaptive surrogate-based strategy for reliability estimation is finally involved into a classical gradient-based optimization algorithm in order to solve the RBDO problem. The kriging surrogates are built in a so-called augmented reliability space thus making them reusable from one nested RBDO iteration to the other. The strategy is compared to other approaches available in the literature on three academic examples in the field of structural mechanics.

354 citations