scispace - formally typeset
Search or ask a question
Author

B. Khidhir

Bio: B. Khidhir is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Tensor & Diffusion (business). The author has an hindex of 1, co-authored 1 publications receiving 175 citations.

Papers
More filters
Book ChapterDOI
19 Sep 1999
TL;DR: This paper describes image processing techniques for Diffusion Tensor Magnetic Resonance, a modality of MRI in which a tensor describing local water diffusion is acquired for each voxel.
Abstract: This paper describes image processing techniques for Diffusion Tensor Magnetic Resonance. In Diffusion Tensor MRI, a tensor describing local water diffusion is acquired for each voxel. The geometric nature of the diffusion tensors can quantitatively characterize the local structure in tissues such as bone, muscles, and white matter of the brain. The close relationship between local image structure and apparent diffusion makes this image modality very interesting for medical image analysis.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the theoretical underpinnings of diffusion-tensor magnetic resonance imaging (DT-MRI), as well as experimental design and data analysis issues are discussed. And new statistical methods have been developed to analyse DT-MRI data, and their potential uses in clinical and multi-site studies.
Abstract: This article treats the theoretical underpinnings of diffusion-tensor magnetic resonance imaging (DT-MRI), as well as experimental design and data analysis issues. We review the mathematical model underlying DT-MRI, discuss the quantitative parameters that are derived from the measured effective diffusion tensor, and describe artifacts that arise in typical DT-MRI acquisitions. We also discuss difficulties in identifying appropriate models to describe water diffusion in heterogeneous tissues, as well as in interpreting experimental data obtained in such issues. Finally, we describe new statistical methods that have been developed to analyse DT-MRI data, and their potential uses in clinical and multi-site studies.

1,424 citations

Journal ArticleDOI
TL;DR: It is demonstrated that human brain tensor data when filtered can effectively describe macrostructural diffusion, which is important in the assessment of fiber-tract organization.

872 citations

Journal ArticleDOI
TL;DR: It is believed that the enhanced sensitivity of newer and more advanced neuroimaging techniques for identifying areas of brain damage in mTBI will be important for documenting the biological basis of postconcussive symptoms, which are likely associated with subtle brain alterations.
Abstract: Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30 % of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the "miserable minority," the cognitive and physical symptoms do not resolve following the first 3 months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both posttraumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence is presented for detecting brain abnormalities in mTBI based on studies that use advanced neuroimaging techniques. Taken together, these findings suggest that more sensitive neuroimaging tools improve the detection of brain abnormalities (i.e., diagnosis) in mTBI. These tools will likely also provide important information relevant to outcome (prognosis), as well as play an important role in longitudinal studies that are needed to understand the dynamic nature of brain injury in mTBI. Additionally, summary tables of MRI and DTI findings are included. We believe that the enhanced sensitivity of newer and more advanced neuroimaging techniques for identifying areas of brain damage in mTBI will be important for documenting the biological basis of postconcussive symptoms, which are likely associated with subtle brain alterations, alterations that have heretofore gone undetected due to the lack of sensitivity of earlier neuroimaging techniques. Nonetheless, it is noteworthy to point out that detecting brain abnormalities in mTBI does not mean that other disorders of a more psychogenic origin are not co-morbid with mTBI and equally important to treat. They arguably are. The controversy of psychogenic versus physiogenic, however, is not productive because the psychogenic view does not carefully consider the limitations of conventional neuroimaging techniques in detecting subtle brain injuries in mTBI, and the physiogenic view does not carefully consider the fact that PTSD and depression, and other co-morbid conditions, may be present in those suffering from mTBI. Finally, we end with a discussion of future directions in research that will lead to the improved care of patients diagnosed with mTBI.

807 citations

Journal ArticleDOI
TL;DR: Maps of axon diameter and density indices from the monkey and human data in the corpus callosum and corticospinal tract reflect known trends from histology.

679 citations

Journal ArticleDOI
TL;DR: Simulations show that the deflection term is less sensitive than the major eigenvector to image noise and is promising for mapping the organizational patterns of white matter in the human brain as well as mapping the relationship between major fiber trajectories and the location and extent of brain lesions.
Abstract: Diffusion tensor MRI provides unique directional diffusion information that can be used to estimate the patterns of white matter connectivity in the human brain. In this study, the behavior of an algorithm for white matter tractography is examined. The algorithm, called TEND, uses the entire diffusion tensor to deflect the estimated fiber trajectory. Simulations and imaging experiments on in vivo human brains were performed to investigate the behavior of the tractography algorithm. The simulations show that the deflection term is less sensitive than the major eigenvector to image noise. In the human brain imaging experiments, estimated tracts were generated in corpus callosum, corticospinal tract, internal capsule, corona radiata, superior longitudinal fasciculus, inferior longitudinal fasciculus, fronto-occipital fasciculus, and uncinate fasciculus. This approach is promising for mapping the organizational patterns of white matter in the human brain as well as mapping the relationship between major fiber trajectories and the location and extent of brain lesions. Hum. Brain Mapping 18:306 -321, 2003. © 2003 Wiley-Liss, Inc.

614 citations