scispace - formally typeset
Search or ask a question
Author

B. M. Monge-Sanz

Bio: B. M. Monge-Sanz is an academic researcher from European Centre for Medium-Range Weather Forecasts. The author has contributed to research in topics: Chemical transport model & Total Ozone Mapping Spectrometer. The author has an hindex of 12, co-authored 15 publications receiving 20452 citations. Previous affiliations of B. M. Monge-Sanz include University of Leeds & Royal Netherlands Meteorological Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal ArticleDOI
TL;DR: SEAS5 as discussed by the authors is the ECMWF's fifth generation seasonal forecast system, which became operational in November 2017 and includes upgraded versions of the atmosphere and ocean models at higher resolutions and adds a prognostic sea-ice model.
Abstract: . In this paper we describe SEAS5, ECMWF's fifth generation seasonal forecast system, which became operational in November 2017. Compared to its predecessor, System 4, SEAS5 is a substantially changed forecast system. It includes upgraded versions of the atmosphere and ocean models at higher resolutions, and adds a prognostic sea-ice model. Here, we describe the configuration of SEAS5 and summarise the most noticeable results from a set of diagnostics including biases, variability, teleconnections and forecast skill. An important improvement in SEAS5 is the reduction of the equatorial Pacific cold tongue bias, which is accompanied by a more realistic El Nino amplitude and an improvement in El Nino prediction skill over the central-west Pacific. Improvements in 2 m temperature skill are also clear over the tropical Pacific. Sea-surface temperature (SST) biases in the northern extratropics change due to increased ocean resolution, especially in regions associated with western boundary currents. The increased ocean resolution exposes a new problem in the northwest Atlantic, where SEAS5 fails to capture decadal variability of the North Atlantic subpolar gyre, resulting in a degradation of DJF 2 m temperature prediction skill in this region. The prognostic sea-ice model improves seasonal predictions of sea-ice cover, although some regions and seasons suffer from biases introduced by employing a fully dynamical model rather than the simple, empirical scheme used in System 4. There are also improvements in 2 m temperature skill in the vicinity of the Arctic sea-ice edge. Cold temperature biases in the troposphere improve, but increase at the tropopause. Biases in the extratropical jets are larger than in System 4: extratropical jets are too strong, and displaced northwards in JJA. In summary, development and added complexity since System 4 has ensured that SEAS5 is a state-of-the-art seasonal forecast system which continues to display a particular strength in the El Nino Southern Oscillation (ENSO) prediction.

340 citations

Journal ArticleDOI
TL;DR: The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics.
Abstract: The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue "The SPARC Reanalysis Intercomparison Project (S-RIP)" in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.

239 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical scheme for the degradation of the short-lived source gases bromoform (CHBr3) and dibromomethane (CH2Br2) was developed and implemented in the TOMCAT/SLIMCAT three-dimensional (3-D) chemical transport model.
Abstract: . We have developed a detailed chemical scheme for the degradation of the short-lived source gases bromoform (CHBr3) and dibromomethane (CH2Br2) and implemented it in the TOMCAT/SLIMCAT three-dimensional (3-D) chemical transport model (CTM). The CTM has been used to predict the distribution of the two source gases (SGs) and 11 of their organic product gases (PGs). These first global calculations of the organic PGs show that their abundance is small. The longest lived organic PGs are CBr2O and CHBrO, but their peak tropospheric abundance relative to the surface volume mixing ratio (vmr) of the SGs is less than 5%. We calculate their mean local tropospheric lifetimes in the tropics to be ~7 and ~2 days (due to photolysis), respectively. Therefore, the assumption in previous modelling studies that SG degradation leads immediately to inorganic bromine seems reasonable. We have compared observed tropical SG profiles from a number of aircraft campaigns with various model experiments. In the tropical tropopause layer (TTL) we find that the CTM run using p levels (TOMCAT) and vertical winds from analysed divergence overestimates the abundance of CH2Br2, and to a lesser extent CHBr3, although the data is sparse and comparisons are not conclusive. Better agreement in the TTL is obtained in the sensitivity run using θ levels (SLIMCAT) and vertical motion from diabatic heating rates. Trajectory estimates of residence times in the two model versions show slower vertical transport in the SLIMCAT θ-level version. In the p-level model even when we switch off convection we still find significant amounts of the SGs considered may reach the cold point tropopause; the stratospheric source gas injection (SGI) is only reduced by ~16% for CHBr3 and ~2% for CH2Br2 without convection. Overall, the relative importance of the SG pathway and the PG pathway for transport of bromine to the stratospheric overworld (θ>380 K) has been assessed. Assuming a 10-day washout lifetime of Bry in TOMCAT, we find the delivery of total Br from CHBr3 to be 0.72 pptv with ~53% of this coming from SGI. Similary, for CH2Br2 we find a total Br value of 1.69 pptv with ~94% coming from SGI. We infer that these species contribute ~2.4 pptv of inorganic bromine to the lower stratosphere with SGI being the dominant pathway. Slower transport to and through the TTL would decrease this estimate.

100 citations

Journal ArticleDOI
TL;DR: Monge-Sanz et al. as mentioned in this paper performed a comparison of the stratospheric circulation achieved by various data assimilation winds using multiannual simulations of the TOMCAT/SLIMCAT off-line 3-D chemical transport model (CTM).
Abstract: [1] A comparison of the stratospheric circulation achieved by various data assimilation winds has been performed using multiannual simulations of the TOMCAT/SLIMCAT off-line 3-D chemical transport model (CTM). Data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the U.K. Met Office (UKMO) have been used to drive the CTM. We find that important improvements have been made in the ECMWF stratospheric winds during recent years. Therefore, a more realistic Brewer-Dobson (B-D) circulation, and subtropical mixing are achieved when ECMWF operational or new interim reanalyses are used instead of ERA-40 analyses. Age-of-air and trajectory calculations show that more realistic vertical and horizontal transport is achieved with the new ECMWF assimilated winds. The modelled tape recorder signal further shows the improvement in the tropical transport with the new winds. Overall, these results show that with the recent ECMWF reanalyses, off-line CTMs can produce stratospheric tracer transport over multiannual timescales more realistically than with other previous (re)analyses. Reasons for the improvements in the new reanalysis are discussed. Citation: Monge-Sanz, B. M., M. P. Chipperfield, A. J. Simmons, and S. M. Uppala (2007), Mean age of air and transport in a CTM: Comparison of different ECMWF analyses, Geophys. Res. Lett., 34, L04801, doi:10.1029/ 2006GL028515.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal ArticleDOI
TL;DR: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses as mentioned in this paper.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

4,572 citations

Journal ArticleDOI
TL;DR: An overview of the MERRA-2 system and various performance metrics is provided, including the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of M...

4,524 citations

Journal ArticleDOI
TL;DR: The Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) as mentioned in this paper is one of the most widely used models for atmospheric trajectory and dispersion calculations.
Abstract: The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA’s Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model’s historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.

3,875 citations