scispace - formally typeset
Search or ask a question
Author

B. M. Voronov

Bio: B. M. Voronov is an academic researcher from Moscow State University. The author has contributed to research in topics: Bolometer & Noise temperature. The author has an hindex of 14, co-authored 42 publications receiving 2242 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a supercurrent-assisted hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons is presented, where a photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse.
Abstract: We experimentally demonstrate a supercurrent-assisted, hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons. A photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse. Subsequent hotspot healing in ∼30 ps time frame, restores the superconductivity (zero-voltage state), and the detector is ready to register another photon. Our device consists of an ultrathin, very narrow NbN strip, maintained at 4.2 K and current-biased close to the critical current. It exhibits an experimentally measured quantum efficiency of ∼20% for 0.81 μm wavelength photons and negligible dark counts.

1,529 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the quantum efficiency (QE), GHz counting rate, jitter, and noise-equivalent power (NEP) of nanostructured NbN superconducting single-photon detectors (SSPDs) in the visible to infrared radiation range.
Abstract: We have measured the quantum efficiency (QE), GHz counting rate, jitter, and noise-equivalent power (NEP) of nanostructured NbN superconducting single-photon detectors (SSPDs) in the visible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-type devices (total area 10×10μm2), operating at 4.2K, exhibit an experimental QE of up to 20% in the visible range and ∼10% at 1.3 to 1.55μm wavelength and are potentially sensitive up to midinfrared (∼10μm) radiation. The SSPD counting rate was measured to be above 2GHz with jitter <18ps, independent of the wavelength. The devices’ NEP varies from ∼10−17W∕Hz1∕2 for 1.55μm photons to ∼10−20W∕Hz1∕2 for visible radiation. Lowering the SSPD operating temperature to 2.3K significantly enhanced its performance, by increasing the QE to ∼20% and lowering the NEP level to ∼3×10−22W∕Hz1∕2, both measured at 1.26μm wavelength.

201 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the measurements and the theoretical model of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range.
Abstract: We present the measurements and the theoretical model of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.

120 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the reset time of NbN superconducting single photon detectors (SSPDs) based on a design consisting of N parallel super-conducting stripes.
Abstract: We have measured the ultrafast reset time of NbN superconducting single photon detectors (SSPDs) based on a design consisting of N parallel superconducting stripes. Compared to a standard SSPD of identical active area, the parallel SSPD displays a similar detection efficiency and a kinetic inductance, which is divided by N2. For N=12, the duration of the voltage detection pulse is reduced by nearly two orders of magnitude down to 200ps. The timing jitter associated with the rising front is only 16ps. These results open a way to efficient detectors with ultrahigh counting rate exceeding 1 GHz.

75 citations

Journal ArticleDOI
TL;DR: In this article, the authors have developed a fabrication process for GHz-counting-rate, single-photon, high-detection-efficiency, NbN, nanowire detectors.
Abstract: We have developed a fabrication process for GHz-counting-rate, single-photon, high-detection-efficiency, NbN, nanowire detectors. We have demonstrated two processes for the device patterning, one based on the standard polymethylmethacrylate (PMMA) organic positive-tone electron-beam resist, and the other based on the newer hydrogen silsesquioxane (HSQ) negative-tone spin-on-glass resist. The HSQ-based process is simple and robust, providing high resolution and the prospect of high fill-factors. Initial testing results show superconductivity in the films, and suggest that the devices exhibit photosensitivity.

65 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The theoretical and experimental status quo of this very active field of quantum repeater protocols is reviewed, and the potentials of different approaches are compared quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.
Abstract: The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here the theoretical and experimental status quo of this very active field are reviewed. The potentials of different approaches are compared quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.

1,603 citations

Journal ArticleDOI
TL;DR: In this paper, a review highlights the recent progress which has been made towards improved single-photon detector technologies and the impact these developments will have on quantum optics and quantum information science.
Abstract: This review highlights the recent progress which has been made towards improved single-photon detector technologies and the impact these developments will have on quantum optics and quantum information science.

1,575 citations

Journal ArticleDOI
TL;DR: The current state of research and future directions in quantum key distribution and quantum networks are reviewed in this paper, with a special emphasis on quantum key distributions and quantum key sharing in quantum networks.
Abstract: Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems We review the current state of research and future directions in this new field of science with special emphasis on quantum key distribution and quantum networks

1,420 citations

Journal ArticleDOI
TL;DR: The current status of single-photon-source and single-Photon-detector technologies operating at wavelengths from the ultraviolet to the infrared are reviewed and applications of these technologies to quantum communication are discussed.
Abstract: We review the current status of single-photon-source and single-photon-detector technologies operating at wavelengths from the ultraviolet to the infrared. We discuss applications of these technologies to quantum communication, a field currently driving much of the development of single-photon sources and detectors.

1,280 citations