scispace - formally typeset
Search or ask a question
Author

B. Mascialino

Bio: B. Mascialino is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Monte Carlo method & Software. The author has an hindex of 21, co-authored 49 publications receiving 7738 citations. Previous affiliations of B. Mascialino include University of Brescia & Stockholm University.


Papers
More filters
Journal ArticleDOI
TL;DR: GeGeant4 as mentioned in this paper is a software toolkit for the simulation of the passage of particles through matter, it is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection.
Abstract: Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Its functionality and modeling capabilities continue to be extended, while its performance is enhanced. An overview of recent developments in diverse areas of the toolkit is presented. These include performance optimization for complex setups; improvements for the propagation in fields; new options for event biasing; and additions and improvements in geometry, physics processes and interactive capabilities

6,063 citations

Journal ArticleDOI
TL;DR: The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase, and represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.
Abstract: Purpose: TheGEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states ( H 0 , H + ) and ( He 0 , He + , He 2 + ), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called “GEANT4-DNA” physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. Methods: An evaluation of the closeness between the total and differential cross section models available in theGEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov–Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. Results: The authors have assessed the compatibility of experimental data withGEANT4microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. Conclusions: TheGEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.

410 citations

Journal ArticleDOI
TL;DR: An overview of the whole on-going Geant4-DNA project is presented, including its most recent developments that are available in the Geant 4 toolkit since December 2009, as well as an illustration example simulating the direct irradiation of a biological chromatin fiber.
Abstract: The Geant4-DNA project proposes to develop an open-source simulation software based and fully included in the general-purpose Geant4 Monte-Carlo simulation toolkit. The main objective of this software is to simulate biological damages induced by ionizing radiations at the cellular and sub-cellular scale. This project was originally initiated by the European Space Agency for the prediction of the deleterious effects of radiations that may affect astronauts during future long duration space exploration missions. In this paper, the Geant4-DNA collaboration presents an overview of the whole on-going project, including its most recent developments that are available in the Geant4 toolkit since December 2009 (release 9.3), as well as an illustration example simulating the direct irradiation of a biological chromatin fiber. Expected extensions involving several research domains, such as particle physics, chemistry and cellular and molecular biology, within a fully interdisciplinary activity of the Geant4 collaboration are also discussed.

360 citations

Posted Content
TL;DR: The Geant4-DNA project as mentioned in this paper proposes to develop an open-source simulation software based and fully included in the general-purpose geant4 Monte Carlo simulation toolkit, which is used to simulate biological damages induced by ionising radiation at the cellular and sub-cellular scale.
Abstract: The Geant4-DNA project proposes to develop an open-source simulation software based and fully included in the general-purpose Geant4 Monte Carlo simulation toolkit. The main objective of this software is to simulate biological damages induced by ionising radiation at the cellular and sub-cellular scale. This project was originally initiated by the European Space Agency for the prediction of deleterious effects of radiation that may affect astronauts during future long duration space exploration missions. In this paper, the Geant4-DNA collaboration presents an overview of the whole ongoing project, including its most recent developments already available in the last Geant4 public release (9.3 BETA), as well as an illustration example simulating the direct irradiation of a chromatin fibre. Expected extensions involving several research domains, such as particle physics, chemistry and cellular and molecular biology, within a fully interdiciplinary activity of the Geant4 collaboration are also discussed.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the results of a series of comparisons for the evaluation of Geant4 electromagnetic processes with respect to United States National Institute of Standards and Technologies (NIST) reference data are presented.
Abstract: The Geant4 Simulation Toolkit provides an ample set of physics models describing electromagnetic interactions of particles with matter. This paper presents the results of a series of comparisons for the evaluation of Geant4 electromagnetic processes with respect to United States National Institute of Standards and Technologies (NIST) reference data. A statistical analysis was performed to estimate quantitatively the compatibility of Geant4 electromagnetic models with NIST data; the statistical analysis also highlighted the respective strengths of the different Geant4 models.

197 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: GeGeant4 as mentioned in this paper is a software toolkit for the simulation of the passage of particles through matter, it is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection.
Abstract: Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Its functionality and modeling capabilities continue to be extended, while its performance is enhanced. An overview of recent developments in diverse areas of the toolkit is presented. These include performance optimization for complex setups; improvements for the propagation in fields; new options for event biasing; and additions and improvements in geometry, physics processes and interactive capabilities

6,063 citations

Journal ArticleDOI
W. B. Atwood1, A. A. Abdo2, A. A. Abdo3, Markus Ackermann4  +289 moreInstitutions (37)
TL;DR: The Large Area Telescope (Fermi/LAT) as mentioned in this paper is the primary instrument on the Fermi Gamma-ray Space Telescope, which is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV.
Abstract: (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration with a total depth of 8.6 radiation lengths. The aspect ratio of the tracker (height/width) is 0.4 allowing a large field-of-view (2.4 sr). Data obtained with the LAT are intended to (i) permit rapid notification of high-energy gamma-ray bursts (GRBs) and transients and facilitate monitoring of variable sources, (ii) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (iii) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (iv) localize point sources to 0.3 - 2 arc minutes, (v) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (vi) measure the diffuse isotropic gamma-ray background up to TeV energies, and (vii) explore the discovery space for dark matter.

3,666 citations

Journal ArticleDOI
TL;DR: Delphes as mentioned in this paper is a fast-simulation of a multipurpose detector for phenomenological studies, including a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system.
Abstract: The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.

2,692 citations

Journal ArticleDOI
John Allison1, K. Amako2, John Apostolakis3, Pedro Arce4, Makoto Asai5, Tsukasa Aso6, Enrico Bagli, Alexander Bagulya7, Sw. Banerjee8, G. Barrand9, B. R. Beck10, Alexey Bogdanov11, D. Brandt, Jeremy M. C. Brown12, Helmut Burkhardt3, Ph Canal8, D. Cano-Ott4, Stephane Chauvie, Kyung-Suk Cho13, G.A.P. Cirrone14, Gene Cooperman15, M. A. Cortés-Giraldo16, G. Cosmo3, Giacomo Cuttone14, G.O. Depaola17, Laurent Desorgher, X. Dong15, Andrea Dotti5, Victor Daniel Elvira8, Gunter Folger3, Ziad Francis18, A. Galoyan19, L. Garnier9, M. Gayer3, K. Genser8, Vladimir Grichine3, Vladimir Grichine7, Susanna Guatelli20, Susanna Guatelli21, Paul Gueye22, P. Gumplinger23, Alexander Howard24, Ivana Hřivnáčová9, S. Hwang13, Sebastien Incerti25, Sebastien Incerti26, A. Ivanchenko3, Vladimir Ivanchenko3, F.W. Jones23, S. Y. Jun8, Pekka Kaitaniemi27, Nicolas A. Karakatsanis28, Nicolas A. Karakatsanis29, M. Karamitrosi30, M.H. Kelsey5, Akinori Kimura31, Tatsumi Koi5, Hisaya Kurashige32, A. Lechner3, S. B. Lee33, Francesco Longo34, M. Maire, Davide Mancusi, A. Mantero, E. Mendoza4, B. Morgan35, K. Murakami2, T. Nikitina3, Luciano Pandola14, P. Paprocki3, J Perl5, Ivan Petrović36, Maria Grazia Pia, W. Pokorski3, J. M. Quesada16, M. Raine, Maria A.M. Reis37, Alberto Ribon3, A. Ristic Fira36, Francesco Romano14, Giorgio Ivan Russo14, Giovanni Santin38, Takashi Sasaki2, D. Sawkey39, J. I. Shin33, Igor Strakovsky40, A. Taborda37, Satoshi Tanaka41, B. Tome, Toshiyuki Toshito, H.N. Tran42, Pete Truscott, L. Urbán, V. V. Uzhinsky19, Jerome Verbeke10, M. Verderi43, B. Wendt44, H. Wenzel8, D. H. Wright5, Douglas Wright10, T. Yamashita, J. Yarba8, H. Yoshida45 
TL;DR: Geant4 as discussed by the authors is a software toolkit for the simulation of the passage of particles through matter, which is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection.
Abstract: Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. The adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions to the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.

2,260 citations

01 Jan 2009
TL;DR: The PENELOPE as mentioned in this paper computer code system performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV.
Abstract: The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

1,675 citations