scispace - formally typeset
Search or ask a question
Author

B. Meunier

Bio: B. Meunier is an academic researcher. The author has contributed to research in topics: Catalysis & Cycloalkane. The author has an hindex of 2, co-authored 2 publications receiving 115 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the same alkylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II) σ-complexes.
Abstract: ion. The oxidative addition mechanism was originally proposed22i because of the lack of a strong rate dependence on polar factors and on the acidity of the medium. Later, however, the electrophilic substitution mechanism also was proposed. Recently, the oxidative addition mechanism was confirmed by investigations into the decomposition and protonolysis of alkylplatinum complexes, which are the reverse of alkane activation. There are two routes which operate in the decomposition of the dimethylplatinum(IV) complex Cs2Pt(CH3)2Cl4. The first route leads to chloride-induced reductive elimination and produces methyl chloride and methane. The second route leads to the formation of ethane. There is strong kinetic evidence that the ethane is produced by the decomposition of an ethylhydridoplatinum(IV) complex formed from the initial dimethylplatinum(IV) complex. In D2O-DCl, the ethane which is formed contains several D atoms and has practically the same multiple exchange parameter and distribution as does an ethane which has undergone platinum(II)-catalyzed H-D exchange with D2O. Moreover, ethyl chloride is formed competitively with H-D exchange in the presence of platinum(IV). From the principle of microscopic reversibility it follows that the same ethylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II). Important results were obtained by Labinger and Bercaw62c in the investigation of the protonolysis mechanism of several alkylplatinum(II) complexes at low temperatures. These reactions are important because they could model the microscopic reverse of C-H activation by platinum(II) complexes. Alkylhydridoplatinum(IV) complexes were observed as intermediates in certain cases, such as when the complex (tmeda)Pt(CH2Ph)Cl or (tmeda)PtMe2 (tmeda ) N,N,N′,N′-tetramethylenediamine) was treated with HCl in CD2Cl2 or CD3OD, respectively. In some cases H-D exchange took place between the methyl groups on platinum and the, CD3OD prior to methane loss. On the basis of the kinetic results, a common mechanism was proposed to operate in all the reactions: (1) protonation of Pt(II) to generate an alkylhydridoplatinum(IV) intermediate, (2) dissociation of solvent or chloride to generate a cationic, fivecoordinate platinum(IV) species, (3) reductive C-H bond formation, producing a platinum(II) alkane σ-complex, and (4) loss of the alkane either through an associative or dissociative substitution pathway. These results implicate the presence of both alkane σ-complexes and alkylhydridoplatinum(IV) complexes as intermediates in the Pt(II)-induced C-H activation reactions. Thus, the first step in the alkane activation reaction is formation of a σ-complex with the alkane, which then undergoes oxidative addition to produce an alkylhydrido complex. Reversible interconversion of these intermediates, together with reversible deprotonation of the alkylhydridoplatinum(IV) complexes, leads to multiple H-D exchange

2,505 citations

Journal ArticleDOI
TL;DR: Alkane hydroxylation proceeds by TSR,70-72,120 in which the HS mechanism is truly stepwise with a finite lifetime for the radical intermediate, whereas the LS mechanism is effectively concerted with an ultrashort lifetime forThe radical intermediate.
Abstract: ion phase that leads to an alkyl radical coordinated to the iron-hydroxo complex by a weak OH---C hydrogen bond, labeled as CI; (ii) an alkyl (or OH) rotation phase whereby the alkyl group achieves a favorable orientation for rebound; and (iii) a rebound phase that leads to C-O bond making and the ferric-alcohol complexes, 4,2P. The two profiles remain close in energy throughout the first two phases and then bifurcate. Whereas the HS state exhibits a significant barrier and a genuine TS for rebound, in the LS state, once the right orientation of the alkyl group is achieved, the LS rebound proceeds in a virtually barrier-free fashion to the alcohol. As such, alkane hydroxylation proceeds by TSR,70-72,120 in which the HS mechanism is truly stepwise with a finite lifetime for the radical intermediate, whereas the LS mechanism is effectively concerted with an ultrashort lifetime for the radical intermediate. Subsequent studies of ethane and camphor hydroxylation by the Yoshizawa group117,181-183 arrived at basically the same conclusion, that the mechanism is typified by TSR. The differences between the results of Shaik et al.130,173,177-180 and Yoshizawa et al.117,181-183 were rationalized recently71,72 and shown to arise owing to technical problems and the choice of the mercaptide ligand,117,181-183 which is a powerful electron donor and is too far from the representation of cysteine in the protein environment. The most recent study of camphor hydroxylation, which was done at a higher quality,117 converged to the picture reported by Shaik et al.130,173,177-180 and shows a stepwise HS process with a barrier of more than 3 kcal/mol for C-O bond formation by rebound of the camphoryl radical vis-à-vis an effectively concerted LS process for which this barrier is 0.7 kcal mol-1 and is the rotational barrier for reaching the rebound position. By referring to Figure 21, it is possible to rationalize the clock data of Newcomb in a simple manner. The apparent lifetimes are based on the assumption that there is a single state that leads to the reaction, such that the radical lifetime can be quantitated from the rate constant of free radical rearrangement and the ratio of rearranged to unrearranged alcohol product. However, in TSR, the rearranged (R) product is formed only/mainly on the HS surface, while the unrearranged (U) product is formed mainly on Figure 20. Formal descriptions of iron(III)-peroxo, iron(III)-hydroperoxo, and iron(V)-oxo species with indication of the negative charges. The roles “electrophile” or “nucleophile” are assigned according to the charge type. Reprinted with permission from ref 7. Copyright 2000 Springer-Verlag Heidelberg. 3964 Chemical Reviews, 2004, Vol. 104, No. 9 Meunier et al.

2,002 citations

Journal ArticleDOI
TL;DR: This critical review focuses on metalloporphyrin-catalysed saturated C-H bond functionalisation reported since the year 2000, including C-O, C-N and C-C bond formation via hydroxylation, amination and carbenoid insertion, respectively, together with a brief description of previous achievements.
Abstract: The recent surge of interest in metal-catalysed C-H bond functionalisation reactions reflects the importance of such reactions in biomimetic studies and organic synthesis. This critical review focuses on metalloporphyrin-catalysed saturated C-H bond functionalisation reported since the year 2000, including C-O, C-N and C-C bond formation via hydroxylation, amination and carbenoid insertion, respectively, together with a brief description of previous achievements in this area. Among the metalloporphyrin-catalysed reactions highlighted herein are the hydroxylation of steroids, cycloalkanes and benzylic hydrocarbons; intermolecular amination of steroids, cycloalkanes and benzylic or allylic hydrocarbons; intramolecular amination of sulfamate esters and organic azides; intermolecular carbenoid insertion into benzylic, allylic or alkane C-H bonds; and intramolecular carbenoid C-H insertion of tosylhydrazones. These metalloporphyrin-catalysed saturated C-H bond functionalisation reactions feature high regio-, diastereo- or enantioselectivity and/or high product turnover numbers. Mechanistic studies suggest the involvement of metal-oxo, -imido (or nitrene), and -carbene porphyrin complexes in the reactions. The reactivity of such metal-ligand multiple bonded species towards saturated C-H bonds, including mechanistic studies through both experimental and theoretical means, is also discussed (244 references).

503 citations

Journal ArticleDOI
TL;DR: This tutorial review describes both new and established methods for the post-polymerization modification of polyolefins, a useful methodology for the generation of new materials with wide ranging applications.
Abstract: Polyolefins are macromolecular alkanes and include the most familiar and most commercially produced plastic, polyethylene. The low cost of these materials combined with their diverse and desirable property profiles drive such large-scale production. One property that renders polyolefins so attractive is their resistance to harsh chemical environments. However, this attribute becomes a severe limitation when attempting to chemically convert these plastics into value-added materials. Functionalization of polymers is a useful methodology for the generation of new materials with wide ranging applications, and this tutorial review describes both new and established methods for the post-polymerization modification of polyolefins.

380 citations