scispace - formally typeset
Search or ask a question
Author

B. Mikkelsen

Bio: B. Mikkelsen is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Optical amplifier & Wavelength-division multiplexing. The author has an hindex of 23, co-authored 84 publications receiving 2936 citations.

Papers published on a yearly basis

Papers
More filters
Journal Article•DOI•
TL;DR: In this article, the influence of saturation filtering on the bandwidth of the converters is explained and conditions for conversion at 20 Gb/s or more are identified for monolithic integrated interferometric wavelength converters.
Abstract: Following a brief introduction to the applications for wavelength conversion and the different available conversion techniques, the paper gives an in depth analysis of cross gain and cross phase wavelength conversion in semiconductor optical amplifiers. The influence of saturation filtering on the bandwidth of the converters is explained and conditions for conversion at 20 Gb/s or more are identified. The cross gain modulation scheme shows extinction ratio degradation for conversion to longer wavelengths. This can be overcome using cross phase modulation in semiconductor optical amplifiers that are integrated into interferometric structures. The first results for monolithic integrated interferometric wavelength converters are reviewed, and the quality of the converted signals is demonstrated by transmission of 10 Gb/s converted signals over 60 km of nondispersion shifted single mode fiber.

855 citations

Journal Article•DOI•
TL;DR: In this paper, the extinction ratio was measured for the converted signal compared to the input signal implying signal regeneration as well as wavelength conversion using SOA in a Mach-Zehnder configuration.
Abstract: Penalty free wavelength conversion is demonstrated at 2.5 Gbit/s over a wavelength span of 12 nm by the use of semiconductor optical amplifier (SOA)'s in a Mach-Zehnder configuration. An increase in the extinction ratio is measured for the converted signal compared to the input signal implying signal regeneration as well as wavelength conversion. >

215 citations

Journal Article•DOI•
TL;DR: In this paper, a detailed analytical traffic model for a photonic wavelength division multiplexing (WDM) packet switch block is presented and the requirements to the buffer size is analyzed.
Abstract: A detailed analytical traffic model for a photonic wavelength division multiplexing (WDM) packet switch block is presented and the requirements to the buffer size is analyzed. Three different switch architectures are considered, each of them representing different complexities in terms of component count and requirements to the components, it is shown that the number of fiber delay-lines, that form the optical buffer, can be substantially reduced by the use of tunable optical wavelength converters, thereby exploiting the wavelength domain to solve contention of optical packets. For a 16/spl times/16 switch with four wavelength channels per inlet, all at a load of 0.8, the number of delay-lines is reduced from 47 to 12 by use of tuneable optical wavelength converters. Apart from the number of delay-lines the physical buffer structure is analyzed with special attention to the possibilities offered by optics, i.e., the possibility of several outlets sharing the same physical buffer. For the three architectures presented here, a tradeoff in the buffer architectures is addressed: a buffer physically shared among an outlets requires many wavelengths internally in the switch block, whereas, architectures with buffers dedicated to each outlet require a smaller number of wavelengths.

200 citations

Journal Article•DOI•
TL;DR: In this paper, the use of tuneable wavelength converters is recognized as essential for reducing the complexity of photonic wavelength division multiplexing (WDM) packet switches and a large throughput of the photonic packet switches is obtained and very importantly this is achieved while keeping the number of gates needed to realize the space switches nearly constant.
Abstract: For realistic traffic, i.e., bursty traffic patterns, the use of tuneable wavelength converters is recognized as essential for reducing the complexity of photonic wavelength division multiplexing (WDM) packet switches. Results are obtained from an analytical traffic model that includes buffering in the wavelength domain and accounts for bursty traffic. The theoretical model is verified by simulations and from the model we find that higher traffic loads as well as burstiness can be accepted when tuneable wavelength converters are used. Consequently, a larger throughput of the photonic packet switches is obtained and very importantly, this is achieved while keeping the number of gates needed to realize the space switches nearly constant.

162 citations

Journal Article•DOI•
TL;DR: In this article, the authors assess the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination.
Abstract: This work assesses the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination. Operation and design guidelines for conversion speeds above 10 Gb/s are described and the various tradeoffs are discussed. Experiments at bit rates up to 40 Gb/s are presented for both cross-gain modulation (XGM) and cross-phase modulation (XPM) in SOAs demonstrating the high-speed capability of these techniques.

148 citations


Cited by
More filters
Journal Article•
TL;DR: The general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability ofOBS protocols to IP over WDM, and the performance of JET-based OBS Protocols is evaluated.
Abstract: To support bursty traffic on the Internet (and especially WWW) efficiently, optical burst switching (OBS) is proposed as a way to streamline both protocols and hardware in building the future generation Optical Internet. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS combines the best of optical circuit-switching and packet/cell switching. In this paper, the general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability of OBS protocols to IP over WDM. Specific issues such as the use of fiber delay-lines (FDLs) for accommodating processing delay and/or resolving conflicts are also discussed. In addition, the performance of JET-based OBS protocols which use an offset time along with delayed reservation to achieve efficient utilization of both bandwidth and FDLs as well as to support priority-based routing is evaluated.

1,997 citations

Journal Article•DOI•
TL;DR: The basic concept of OBS is described and a general architecture of optical core routers and electronic edge routers in the OBS network is presented and a nonperiodic time-interval burst assembly mechanism is described.
Abstract: Optical burst switching (OBS) is a promising solution for building terabit optical routers and realizing IP over WDM. In this paper, we describe the basic concept of OBS and present a general architecture of optical core routers and electronic edge routers in the OBS network. The key design issues related to the OBS are also discussed, namely, burst assembly (burstification), channel scheduling, burst offset-time management, and some dimensioning rules. A nonperiodic time-interval burst assembly mechanism is described. A class of data channel scheduling algorithms with void filling is proposed for optical routers using a fiber delay line buffer. The LAUC-VF (latest available unused channel with void filling) channel scheduling algorithm is studied in detail. Initial results on the burst traffic characteristics and on the performance of optical routers in the OBS network with self-similar traffic as inputs are reported in the paper.

961 citations

Journal Article•DOI•
TL;DR: In this paper, the authors present a review of various wavelength conversion techniques, discusses the advantages and shortcomings of each technique, and addresses their implications for transparent WDM networks, and discuss their potential advantages over the optoelectronic counterpart.
Abstract: WDM networks make a very effective utilization of the fiber bandwidth and offer flexible interconnections based on wavelength routing. In high capacity, dynamic WDM networks, blocking due to wavelength contention can he reduced by wavelength conversion. Wavelength conversion addresses a number of key issues in WDM networks including transparency, interoperability, and network capacity. Strictly transparent networks offer seamless interconnections with full reconfigurability and interoperability. Wavelength conversion may be the first obstacle in realizing a transparent WDM network. Among numerous wavelength conversion techniques reported to date, only a few techniques offer strict transparency. Optoelectronic conversion (O/E-E/O) techniques achieve limited transparency, yet their mature technologies allow deployment in the near future. The majority of all-optical wavelength conversion techniques also offer limited transparency but they have a potential advantage over the optoelectronic counterpart in realizing lower packaging costs and crosstalk when multiple wavelength array configurations are considered. Wavelength conversion by difference-frequency generation offers a full range of transparency while adding no excess noise to the signal. Recent experiments showed promising results including a spectral inversion and a 90 nm conversion bandwidth. This paper reviews various wavelength conversion techniques, discusses the advantages and shortcomings of each technique, and addresses their implications for transparent networks.

928 citations

Journal Article•DOI•
TL;DR: In this article, the influence of saturation filtering on the bandwidth of the converters is explained and conditions for conversion at 20 Gb/s or more are identified for monolithic integrated interferometric wavelength converters.
Abstract: Following a brief introduction to the applications for wavelength conversion and the different available conversion techniques, the paper gives an in depth analysis of cross gain and cross phase wavelength conversion in semiconductor optical amplifiers. The influence of saturation filtering on the bandwidth of the converters is explained and conditions for conversion at 20 Gb/s or more are identified. The cross gain modulation scheme shows extinction ratio degradation for conversion to longer wavelengths. This can be overcome using cross phase modulation in semiconductor optical amplifiers that are integrated into interferometric structures. The first results for monolithic integrated interferometric wavelength converters are reviewed, and the quality of the converted signals is demonstrated by transmission of 10 Gb/s converted signals over 60 km of nondispersion shifted single mode fiber.

855 citations

Journal Article•DOI•
TL;DR: The objective of this paper is to summarize the basic optical networking approaches, report on the WDM deployment strategies of two major US carriers, and outline the current research and development trends on WDM optical networks.
Abstract: While optical-transmission techniques have been researched for quite some time, optical "networking" studies have been conducted only over the past dozen years or so. The field has matured enormously over this time: many papers and Ph.D. dissertations have been produced, a number of prototypes and testbeds have been built, several books have been written, a large number of startups have been formed, and optical WDM technology is being deployed in the marketplace at a very rapid rate. The objective of this paper is to summarize the basic optical networking approaches, report on the WDM deployment strategies of two major US carriers, and outline the current research and development trends on WDM optical networks.

731 citations